
CHAPTER 6 THE SCULPTOR
PRE-PROCESSOR

This chapter describes the additional language features provided by the
Sculptor pre-processor, spp.

Contents

An overview of the pre-processor .

Conditional compilation and manifest constants

Additional flow control

File inclusion

Automatic exclusion and subroutine libraries

Generated line labels

Command line syntax

Command section contents

Page

.6-2

.6-3

.6-4

.6-5

.6-5

.6-6

.6-7

.6-9

Sculptor Reference Manual
Source Pre-Processor

04.90 6-1

An overview of the pre-processor

spp is a front end pre-processor for both the Sculptor screen language
and the Sculptor report language. It provides additional language
features such as manifest constants, the ability to include library files,
conditional compilation and some new commands.

spp works by reading a source language file which contains both
pre-processor statements and standard screen or report language
statements. It outputs new source code which contains only standard
screen or report language statements.

When the Sculptor compiler, cf or cr, reads your source file, it transforms
the instructions and declarations in that source file into a form which is
understood by the interpreter, sage 0 r sage rep respectively. This
processes the source file.

Pre-processing involves reading the source file and replacing any
commands and declarations that only the pre-processor understands
with commands that the compiler, ef or er, will understand. The whole
process is one of textual substitution, nothing more. The source file is
read by the pre-processor, text substitution occurs and a new temporary
source file is produced which is passed to the appropriate compiler for
compilation. The original source file may contain commands which can
only be recognised by the pre-processor, but the source file output to the
compiler will contain only commands that the compiler will recognise.

Performing this extra processing has a number of advantages. During
the course of reading the file, other operations may also be performed.

1. Conditional compilation. Sections of program code may be
included or omitted from the output source file based on the
contents of special constants that are defined to the pre-processor
either on the command line or in the body of the program being
compiled.

2. Manifest constants. These special constants allow the
programmer to use symbolic names which will be replaced, by the
pre-processor, with text as required. This aids portability of the
source, simplifies reading the source code and is a very useful aid
when debugging.

6-2 04.90 Sculptor Reference Manual
Source Pre-Processor

3. Additional flow control. The pre-processor provides language
extensions, such as loops, which are converted to normal flow
control statements in the output file.

4. File inclusion. A single source file may be comprised of multiple
files, included as directed at any location. These included files may
contain ,program subroutines, options, screen definitions or any
other portion of the final source file.

5. Automatic exclusion. Sections of program code may be
automatically excluded from the output source file if the code is not
used by the program.

By default the source code output by spp is placed in a temporary file
and the appropriate compiler is called to compile it (ct for screen form
programs or cr for report programs). If the compilation is successful the
object file produced by the compiler is renamed to have the same name
as the original source file except for its extension; screen program object
files have a .g extension; report program object files have a .q extension.
If the compilation is unsuccesful any existing object file is left unaltered.
All temporary files are automatically deleted.

Conditional compilation and manifest constants

Conditional compilation is a process whereby selected parts of the
source program are included or excluded according to the value of
compile-time conditions. Its main benefit is to allow one suite of source
code programs to be maintained for a variety of target compilation
environments. Additional uses include the ability to include
debugging/trace statements during the development cycle, or to
include/exclude specific functions from a compiled program according to
requirements.

Compile time conditions are implemented by testing the value of certain
constants. These constants fall into two basic sets; system predefined
constants and programmer defined constants. Collectively these are
referred to as manifest constants.

A manifest constant may be defined within the program using the !define
declaration or on the spp command line using the -0 option.

Sculptor Reference Manual
Source Pre-Processor

04.90 6-3

The section of source code to be included/excluded is defined by the
scope of the !ifdef/!ifndef declaration and the corresponding !endif
declaration.

Manifest constants may be defined without value, in which case they may
be used only to control conditional compilation, or they may be given a
textual value. When a manifest constant is given a value, every
occurrence of that manifest constant in the output source file is replaced
with the text value defined.

Important note: The pre-processor performs textual substitution only -
it does not evaluate expressions.

Text enclosed within double quotes will not be replaced, but option help
text and box titles enclosed in curly braces will be. The example below
shows how a help message and box title can be changed according to
the value of a manifest constant.

!define PROG test.r

+at 8,20 drawbox 5,40 {PROG test screen}

*t=Test {PROG: test option}
message "Test PROG"

The PROG within curly braces will be replaced; but that within the quotes
will not.

Additional flow control

The compilers, cf and cr, support only line labels and statements that
transfer control to them, ie, goto, gosub and trap clauses. Most modern
languages support program flow control constructs such as for, while
and switch. These constructs however, are usually broken down into
simpler labels and jumps in the compilation or interpretation phase of
these languages.

In Sculptor, the pre-processor implements the for, while and switch
constructs, producing special line labels and the appropriate goto
statements in the output source file.

6-4 04.90 Sculptor Reference Manual
Source Pre-Processor

for and while loops

The for loop has a construct similar to that supplied by the 'C' langua\::l~
It benefits from full control of the initialisation, continuation condition and
control parts of the loop. Both for and while loops execute while the loop
condition remains true (non-zero) and will only execute if the condition
is true when the loop is encountered.

Two additional pre-processor commands are also provided to control
loop iteration. These are break and continue. The special line label
versions of these (BREAK and CONTINUE) may be used within a trap
clause to directly control loop iteration.

switch

The switch construct allows selective execution of one or more sections
of code based on an expression evaluated at run-time.

File inclusion

As programs become larger and more complex, the ability to break a
complete program down into smaller components becomes more
attractive. In group programming environments, also, the ability to utilise
standard subroutine libraries across applications simplifies
standardisation, development and modification.

The pre-processor provides the !include declaration to allow the
inclusion of other source files at the point of the declaration. The included
files may contain both valid program code, such as declarations, options
or subroutines and other !include declarations. Includes may be nested
up to 15 levels deep.

When making extensive use of include files it is wise to adopt a naming
convention for fields and labels to reduce the possibility of naming
conflicts. Include files may have any name and/or extension - within
operating system limits.

Sculptor Reference Manual
Source Pre-Processor

04.90 6-5

Automatic exclusion and subroutine libraries

This combination of include files and conditional compilation can be
taken a step further. The pre-processor provides the declarations !ifneed
and !endneed which allow the inclusi~n of code sections only if a named
subroutine is the subject of a gosub statement. This allows the efficient
use of a subroutine library which may be included in every program, the
output code containing only those routines used by that program.

Generated line labels

When replacing flow control statements with line labels and goto
statements, the pre-processor generates special line labels. Name
conflicts will occur if your program contains line labels which match those
generated by spp, but the format of the labels makes this unlikely.

The labels generated by the for and while loops have the format XXn
where n is a sequential number. The first generated label will be XXO.

The switch statement is more complex. Line labels take the format
YYn_na where n is a sequential number and where the letter a is added
when the break statement is not used at the end of a preceding case to
continue execution at the statements in the next case. The algorithm
used to calculate the numbers ensures that no duplicate line labels will
occur. The characters YY will always precede the label.

To prevent naming conflicts, do not use numeric labels in your program
which begin with either the characters XX or YY.

Predefined manifest constants

The following predefined manifest constants are used to provide
operating system and compiler type independence during compilation.
One from each group will be defined during a compilation.

COMPILER TYPE

SAGE

Defined only when the pre-processor is producing output for the screen
language compiler. This constant can be used in standard subroutine
libraries to only include code which is to be compiled for the screen form
language.

6-6 04.90 Sculptor Reference Manual
Source Pre-Processor

SAGEREP
Defined only when the pre-processor is producing output for the
report/batch language compiler. This constant can be used in standard
subroutine libraries to only include code which is to be compiled for the
report/batch language.

OPERATING SYSTEM TYPE

MSDOS
Defined only when compiling with the MSDOS version of spp.

OS9
Defined only when compiling with the OS9 version of spp.

UNIX

Defined only when compiling with a Unix or Xenix version of spp. This
constant will also be defined in derivatives of these operating systems,
egoSINIX, SUNOS, etc.

VMS
Defined only when compiling with the VMS version of spp.

Command line syntax

The command line syntax for spp is:

spp [-option] ... filename [filename] ...

where each filename is a text file with a .f or .r extension and -option may
be one or more of the following:

-c Do not compile the output from the pre-processor.
This option is useful to check for pre-processor
errors or to obtain a listing only.

Sculptor Reference Manual
Source Pre-Processor

04.90 6-7

-Dsymbo1 =tex~

-f:funes

-I

-L=lines

-m

-n

-N

-q

-oetileneme

-x

-z

Example

Define the manifest constant symbol. If the
optional text is specified the manifest constant is
given that value, otherwise it is given a null value.
See !define for further information on the use of
manifest constants.

When calling the report/batch language compiler,
set the number of fields that can be the target of
the special functions total, min, max and count
to funes. The default is 20.

Produce a listing of the new source code to
standard output.

Set the maximum number of source lines that the
pre-processor can handle to lines. The default is
4000.

List the output in 24-line pages with a prompt to
continue or terminate at the end of each page.

Provide overall line numbers on the output listing.

Provide overall line numbers and also file
numbers plus line numbers within file for the main
file and for each include file.

Suppress header messages. By default the
pre-processor identifies itself and indicates the
filename and the language type of each file that it
compiles.

Place the output source code in filename.

List all subroutine names and the number of times
that each one is called.

Display or print blank if a field is zero. This may
be over-ridden in a program with the !zeros
declaration or with a field format that forces zeros
to be shown.

spp -1 stock
spp -IN custs.r custs.s
spp -DUNIX -DMAXLINE=6 -qo=addr.out addr.f
spp -x *.f *.r >subs.out

6-8 04.90 Sculptor Reference Manual
Source Pre-Processor

CONTENTS SOURCE PRE-PROCESSOR
COMMAND SECTION

Contents Page

Pre-processor declarations 6-11
!define 6-11
!ifdef 6-12
!ifndef 6-13
!ifneed 6-14
!include 6-15

Language extensions 6-16
for 6-16
switch/case 6-18
while 6-20
break 6-22
continue 6-23

Special labels 6-24
BREAK 6-24
CONTINUE 6-25

Sculptor Reference Manual
Source Pre-Processor

04.90 6-9

Define a manifest constant !define

SYNTAX

!define symbol [text 1

DESCRIPTION

Declares the named symbol and assigns text to that symbol. Every
occurrence of symbol from the point of the definition onwards, except
within quoted text, is replaced with text. If text is omitted, the symbol is
defined but has a null value. The text may contain other manifest
constants and, provided the definition of the constant appears before this
use, it will be replaced correctly.

If a manifest constant is redefined, the redefinition will be ignored.

It is convenient to adopt a naming convention for manifest constants.
The examples shown in this manual use upper case for all manifest
constants.

The pre-processor automatically defines certain manifest constants for
your use (see page 6-6).

NOTES

The symbol cannot be a reserved word.

An occurrence of symbol inside quotes will not be replaced.

An occurrence of symbol inside curly braces will be replaced.

EXAMPLE

!define DEBUG
!define AT
!define WARN
!define CONFIRM

at 23,1
AT put "WARNING
AT : pu= "CONFIRM

" .,
" .r

*d=De1ete
WARN: put "Delete this record "; : prompt "OK" no=D1
CONFIRM : prompt "Are you sure" no=D1
delete NAME : clear : end

D1 message "Record was NOT deleted" : end

Sculptor Reference Manual
Source Pre-Processor

04.90 !define 6-11

!ifdef Compile statements only if symbol is defined

SYNTAX

!ifdef symbol
statements
[!else
statements 1
!endif

DESCRIPTION

The statements between the !ifdef and its corresponding !endif are
included in the output file only if the named symbol has been previously
defined. Each !ifdef must have a matching !endif which terminates its
scope.

If symbol is defined the statements which follow the !ifdef are included
and if there is a matching !else declaration the statements which follow
the !else are excluded.

If symbol is undefined the statements which follow the !ifdef are
excluded and if there is a matching !else declaration the statements
which follow the !else are included.

A symbol may be defined with the !define declaration or by using the -0
option on the command line.

The statements which follow a !ifdef or a !else may contain other
complete !ifdef and !ifndef constructs.

The pre-processor automatically defines certain manifest constants for
your use (see page 6-6).

EXAMPLE

!ifdef DEBUG
!ifdef MSDOS

gosub MSDOS DEBUG
!else

!endif
!endif

6-12 !ifdef 04.90 Sculptor Reference Manual
Source Pre-Processor

Include statements only if a symbol is not defined !ifndef

SYNTAX

!ifndef symbol
statements
[!else
statements]
!endif

DESCRIPTION

The statements between the !ifndef and its corresponding !endif are
compiled only if the named symbol has not been previously defined. Each
!ifndef must have a matching !endif which terminates its scope.

If symbol is undefined the statements which follow the !ifndef are
included and if there is a matching !else declaration the statements
which follow the !else are excluded.

If symbol is defined the statements which follow the !ifndef are excluded
and if there is a matching !else declaration the statements which follow
the !else are included.

A symbol may be defined with the !define declaration or by using the -0
option on the command line.

The statements which follow a !ifndef or a !else may contain other
complete !ifdef and !ifndef constructs.

The pre-processor automatically defines certain manifest constants for
your use (see page 6-6).

EXAMPLE

!ifndef DEBUG
input password eoi=KWIT bs=KWIT
gosub PASS CHECK
if user_level<>O then goto ACCESS

!else
message "Password bypassed"
user level=9

!endif

Sculptor Reference Manual
Source Pre-Processor

04.90 !ifndef 6-13

!ifneed Include statements if named subroutine is called

SYNTAX

!ifneed name
statements
!endneed

DESCRIPTION

The statements are included only if there is a gosub to the subroutine
name somewhere in the source code.

Typically !ifneed is used in an include file which contains a library of
subroutines. If the statements for each subroutine are bracketed by
!ifneed and !endneed, the subroutine is included only if needed.

The source code within the scope of this declaration may contain any
valid program code, but will usually contain the subroutine named label
and any subroutines associated only with that subroutine. Judicious use
of !ifneed will allow large subroutine libraries to be used without
sacrificing program size.

NOTES

As the complete source file has to be checked for the named
subroutine, using !ifneed will cause a second pass through the
source file to resolve the outstanding needs.

When including multiple subroutines within a !ifneed, bear in mind
that the decision to include or exclude the complete section of code
will depend on only the named subroutine being called.

EXAMPLE

!ifneed USER CHECK
USER CHECK -

... code for the subroutine
return

!endneed

6-14 !ifneed 04.90 Sculptor Reference Manual
Source Pre-Processor

Include a named file in the current source code !include

SYNTAX

!include "filename" I < tileneme »

DESCRIPTION

An !include declaration is replaced by the entire content of the named
file. The included file is compiled as if it were physically part of the current
source file.

If filename is enclosed in angle brackets «» the include sub-directory
of the central SCULPTOR directory is searched for the named file. (By
default the central SCULPTOR directory is lusrlSCULPTOR on Unix and
\SCULPTOR on DOS. This default may be changed by setting the
SCULPTOR environment variable to another path.)

If filename is enclosed in double quotes ("") the normal path searching
rules apply.

NOTES

If the named file could not be found, an operating system error is
returned and the compilation is aborted.

The contents of the included file should be relevant to the position
of the declaration.

EXAMPLE

!include <errors.h>

!ifdef DEBUG SIGNAL
!include "debug.scr"
!endif

Sculptor Reference Manual
Source Pre-Processor

04.90 !include 6-15

for Repeat statements with initialisation and control

SYNTAX

for ([initialisation] ; condition; [control]) {
statements

}

DESCRIPTION

Performs an initialisation statement at the start of the loop and then
repeats, statements while condition is true. The control statement is
performed at the end of each iteration of the loop. Left and right braces
are used to delimit the statements which are controlled by a for
command.

condition is tested before the start of each iteration. If false, the loop
terminates immediately and control passes to the statement which
follows the closing brace.

There are two special commands which may only be used inside a loop.
These are break and continue.

A break command causes the loop to terminate and passes control to
the statement which follows the right brace. A continue command
causes the current iteration to end. Statements between the continue
command and the right brace are skipped but the control statement is
still executed. The loop then continues or terminates depending on the
value of condition.

An expression is true if it is non-zero and false if it is zero. The simple
expression 1 may be used as a condition and will cause a loop to repeat
indefinitely. Such a loop can only be terminated by a break command.

The statements between the braces may contain other loop and switch
constructs.

Both the initialisation and the control statements may be multiple
statements separated by colons in the usual manner.

The pre-processor will expand the for statement to standard Sculptor
labels and goto statements. The pre-processed output can be listed with
the -I command line option.

6-16 for 04.90 Sculptor Reference Manual
Source Pre-Processor

NOTES

The opening brace must be on the same line as the for command,
but line continuation characters are permitted.

for loops may be nested up to 95 levels deep.

The semi-colons are always required.

The special labels BREAK and CONTINUE can be used on the
trap clause of Sculptor commands to perform the same functions
as the break and continue commands.

EXAMPLE

for (scroll 1; scrline < 10; scroll)
input name eoi=BREAK
if (name = nn) then break
input surname, phone

Sculptor Reference Manual
Source Pre-Processor

04.90 for 6-17

switch Perorm a multi-way decision

SYNTAX

switch (field) {
case condition:

default:

statements
[break 1
statements
[break 1

}

DESCRIPTION

A switch command selects a set of statements to be executed according
to the value of a record or temporary field. Left and right braces are used
to delimit the statements which are controlled by a switch command.

The concatenation of field and condition must form a relational
expression which yields true or false. The conditions are tested in order
and if an expression yields true the statements for that case are
executed.

Normally the statements for a case should be terminated by a break
command. This causes statement execution to continue with the
statement which follows the closing brace, regardless of the condition
attached to any subsequent case. If the break command is omitted
execution continues with the first statement of the next case, regardless
of the condition attached to that case.

The statements for the optional default are executed only if no other
case is true except that it is still possible to fall through to the default
case if the preceding case is not terminated by a break command. The
position of the default case may be anywhere in the list of cases.

If no case is true and if there is no default case then no statements within
the switch are executed.

The pre-processor will expand the switch statement to standard
Sculptor labels and goto statements. The pre-processed output can be
listed with the -I command line option.

6-18 switch 04.90 Sculptor Reference Manual
Source Pre-Processor

NOTES

The conditions are evaluated in the order defined.

If no conditions are true and there is no default, no statements are
executed.

The special label BREAK may be used on the trap clause of
Sculptor commands and will perform the same function as the
break command.

EXAMPLE

switch (value)
case = 10 :

message
case < 20

message
break

case > 50:
message
break

"Value is 10" /* fall through */

"Value is less than 20"

"Value is greater than 50"

default:
message "Value is between 20 and 50"
break

Sculptor Reference Manual
Source Pre-Processor

04.90 switch 6-19

while Repeat statements while a condition is true

SYNTAX

while (condition) {
statements

}

DESCRIPTION

Repeats the statements while the condition evaluates true. Left and right
braces are used to delimit the statements which are controlled by a while
statement. The condition is evaluated at the start of each iteration of the
loop and if it is false, the loop terminates immediately and control is
passed to the statement following the closing brace.

If condition evaluates false at the start of the first iteration, the loop is not
entered.

There are two special commands which may only be used inside a loop.
These are break and continue.

A break command causes the loop to terminate and passes control to
the statement which follows the right brace. A continue command
causes the current iteration to end. Statements between the continue
command and the right brace are skipped. The loop then continues or
terminates depending on the value of condition.

A relational expression is true if it is non-zero and false if it is zero. The
simple expression 1 may be used as a condition and will cause a loop to
repeat indefinitely. Such a loop can only be terminated by a break
command.

The statements between the braces may contain other loop and switch
constructs.

The pre-processor will expand the while statement to standard Sculptor
labels and goto statements. The pre-processed output can be listed with
the -I command line option.

6-20 while 04.90 Sculptor Reference Manual
Source Pre-Processor

NOTES

The special labels BREAK and CONTINUE can be used on the
trap clauses of Sculptor commands and they perform the same
functions as break and continue.

EXAMPLE

while (1)
input value
if (value < 0) then break
total = total + value

Sculptor Reference Manual
Source Pre-Processor

04.90 while 6-21

break Terminate a loop

SYNTAX

break

DESCRIPTION

May be used only within a for or while loop, or the case section of a
switch statement. In loops, a break command interrupts the current
iteration of the loop and passes control to the statement which follows
the loop's terminating right brace.

In a switch statement, a break command terminates the current case
and passes control to the statement which follows the switch's
terminating right brace.

NOTES

This command is ignored if encountered outside a for, while or
switch statement.

The special label BREAK may be used within the trap clause of a
Sculptor command to perform the same function.

6-22 break 04.90 Sculptor Reference Manual
Source Pre-Processor

End the current iteration of a loop continue

SYNTAX

continue

DESCRIPTION

May be used only inside a for or while loop to end the current iteration
of the loop. Statements between the continue command and the loop's
closing brace are skipped. The loop then continues only if its continuation
condition is still true.

This command is used by the pre-processor when generating line labels
and goto statements for the output source file. It is not passed on to the
compilers.

NOTES

This command is ignored if encountered outside a for or while
loop.

The special label CONTINUE may be used within the trap clause
of a Sculptor command to perform the same function.

Sculptor Reference Manual
Source Pre-Processor

04.90 continue 6-23

BREAK Special label used to terminate a loop

SYNTAX

trap = BREAK

DESCRIPTION

Used only within the trap clause of a Sculptor command to immediately
terminate a for or while loop or the case section of a switch statement
and transfer control to the statement following the closing brace.

trap may be any valid trap for the Sculptor command being used.

NOTES

Functionally equivalent to the break command.

6-24 BREAK 04.90 Sculptor Reference Manual
Source Pre-Processor

Special label used to end the current iteration of CONTINUE
a loop

SYNTAX

trap = CONTINUE

DESCRIPTION

Used only within the trap clause of a Sculptor command to end the
current iteration of a for or while loop. The loop will continue only if its
condition evaluates true.

trap may be any valid trap for the Sculptor command being used.

NOTES

Functionally equivalent to the continue command.

Sculptor Reference Manual
Source Pre-Processor

04.90 CONTINUE 6-25

CHAPTER 7 THE SCREEN FORM
LANGUAGE

This chapter explains the use of the screen form language and details
the functions, declarations and commands available.

Contents Page

Introduction to the screen form language

Program structure

Screen overlays

Screen fields .

The scroll area

Field formats .

Program options

Expressions and operators

Type conversion

Exception traps .

Field lists

The key= clause

Command line syntax for cf

Command line syntax for sage

Command section contents .

.7-2

.7-2

.7-3

.7-3

.7-4

.7-4

.7-5

.7-6

.7-7

.7-8

.7-8

.7-9

7-10

7-10

7-11

Sculptor Reference Manual
Screen Form Language

04.90 7-1

Introduction to the screen form language

The screen form language has been designed primarily for processing
data interactively on a screen form. Although a screen form program may
be written to perform without operator intervention, most screen form
programs display data and allow data input.

A screen form is defined containing screen fields in which data may be
input and displayed. Program options are defined which are presented
on a menu line and the operator selects an option from those shown.
When an option is selected by the operator, the screen form language
code for that option is executed. When the code terminates, the menu
line is redisplayed and the operator is again able to select an option.

The screen form language elements are specifically designed for the
screen based processing of Sculptor keyed files. There are many
powerful commands, making it possible to create sophisticated programs
quickly and easily. Most of the hard work associated with placing a form
on the screen, inputting valid data, displaying formatted data and
performing complex file manipulations are handled automatically. The
language has many useful default actions, but the programmer is free to
override them as required.

Program structure

A screen form program is written as a standard text file using an editor.
The language is line-oriented and recognises these line types:

1. The first line in the program is considered the title line and will be
displayed, centred, on the top line of the screen. Leave this line
blank if a title is not required.

2. Lines commencing with a full stop are comment lines and are
ignored by the compiler. Blank lines are also ignored (except for
the title line).

3. Lines commencing with an exclamation mark "!" are declarations.
Declarations are used to initialise the program and to define
special actions.

4. Lines commencing with a plus sign "+" are screen field definitions
and declare for each screen overlay used, the fields that will be
placed on that screen overlay.

7-2 04.90 Sculptor Reference Manual
Screen Form Language

5. Lines commencing with an asterisk introduce a program option and
are followed by the program statements for that option.

6. Other lines are program statements. If the first word on the line is
not a field name or a Sculptor reserved word, and if it is in the
leftmost column, then it is taken to be a line label. Multiple
statements, separated by colons, may be placed on a single line.

Program statements may extend over more than one physical line by
terminating each line that is to be continued with a backslash "\"
character.

Screen overlays

Up to eight screen overlays may be defined within a single screen form
program. Each screen overlay may contain screen fields and/or graphics
and each may be turned on or off using the screen command. When the
program starts, screen one is on and all others are off. When a screen
overlay is turned on all fields and/or graphics associated with that screen
are displayed and when it is turned off they are removed and any
underlying fields or graphics are redisplayed.

The !screen declaration defines the screen or screens on which the'- fields and/or graphics which follow are to be placed.

Screen fields

All fields that are to be displayed or input must be given a screen field
definition which takes the format:

+ field_name, [heading 1 , row, column [, format 1 [{ help text} 1
The field_name may be a field from a declared Sculptor keyed file or a
temporary field (defined with !temp). A field may only be defined once,
but may be placed on multiple screen overlays. If the heading is not
given, the default heading for the field is used. The heading is
automatically displayed to the left of the field.

The row and column are numeric constants which define the location on
the screen where the first character of the data is shown. The optional
format, if declared, will over-ride the default format for the field.

The help text, if defined, will over-ride any help text previously defined
for the field.

04.90 7-3Sculptor Reference Manual
Screen Form Language

Screen fields are automatically delimited with the characters "[" and "l".
This default may be over-ridden with the !box deciaration,and the default
may be changed within the sage program using the Icf program.

For alpha fields, the width of the data displayed is determined by the size
of the field. For numeric fields, the width displayed is determined by the
format applied.

The scroll area

If the row number for a field equals the row number in a !scroll
declaration, the field is displayed as a column of fields equal to the depth
of the scroll area, starting at row +1. The heading is displayed on row,
centred above the field.

The scroll area is global to all screen overlays and provides a mechanism
to display multiple copies of a field on the screen. The scrline special
temporary field holds the line number of the current line of the scroll area.
The current line may be changed using the scroll command.

Fi.eld formats

A field may have a format defined for it which will affect the way in which
the field is displayed, input or assigned to. Alpha fields are always a fixed
length (as defined by the size of the field), but their behaviour may be
modified using a format modifier as defined below:

n
m-format

Suppress echo of input characters
Force lower case on input
Force upper case on input
Remove trailing spaces on get and put
Null terminated field (see get for details)
When a numeric value is assigned to this alpha
field, treat it as a money value with two implied
decimal places and use this format.
When a numeric value is assigned to this alpha
field, treat it as a date (day number) and use this
format
When a numeric value is assigned to this alpha
field, use this format instead of the default format.

e
I
u

d-torrnat

-torrnat

7-4 04.90 Sculptor Reference Manual
Screen Form Language

The format applies only to fields which are input unless it is followed by
a plus sign "+" in which case the format also applies when the field is
assigned.

The format for a numeric field defines the size of the field shown on the
screen, but does not affect the value that is stored for that field. Formats
used for numeric fields may comprise any combination of these special
characters:

Digit, blank if leading zero
Digit, shown as zero if leading zero
Digit, shown as asterisk if leading zero
Comma, grouping significant digits
Decimal point position

For date fields, the characters dmy are used to to determine the date
format. A date separator character must also be defined. The examples
below show alpha, date and numeric formats.

#
o
*

dd/mm/yyyy
dd.mm
u+
d-dd/mm/vy
#,###.##
#.########

Format date field with 4-digit year
Valid for display only, no year shown
All assignment and input forced to upper case
Assign date to alpha using the defined format
Short format for an m4/mS/rS field
Only valid tor an rS field

Program options

A screen form program usually includes a number of options from which
the operator is invited to choose. Each program option has an associated
section of program statements. An option is introduced in the program
by an option header line:

*kevs-oescription [{ help text}]

Where keys may be one or two printable characters, and defines the
characters required to select the option (except when !option is used -
see page 7-47).

Each option will be shown on the option line of the screen in the order of
definition in the program. The option line may be changed with the
!option declaration.

Sculptor Reference Manual
Screen Form Language

04.90 7-5

Following an option line are the statements to be executed when that
option is selected by the operator. The processing of a selected option
continues until:

1. An end statement is encountered. This returns control to the option
prompt.

2. An exit statement is encountered. This terminates the program.

3. An untrapped error condition occurs. A relevant message is shown
and control returns to the option prompt.

4. The operator cancels the option during an input operation by
pressing the CANCEL key as defined in the vdu parameter file.
This returns control to the option prompt (see the cancel command
for further details).

If the first character of keys'is an asterisk then that option is not shown
on the screen, but may still be selected by the user by typing the asterisk
and the key that follows. For example,

**d=Delete

In this instance the option will not be shown, but may be selected by
typing "*d" at the option prompt.

The program statements for an option must terminate with an end
command if execution is not to fall through into the code for the next
option.

A program may be created which contains no program options, all
processing being performed in the initialisation code. Ensure that such
a program terminates with an exit command.

Expressions and operators

The screen form language supports a comprehensive set of arithmetic
and relational operators. These may be used to form expressions
involving record fields, temporary fields and constants.

A table of the operators is shown below in descending order of
precedence with operators having equal precedence grouped together.
Parentheses may be used to force the order of evaluation.

7-6 04.90 Sculptor Reference Manual
Screen Form Language

Group

1

Operator

2 *

3 +

+

4
<
>
<=
>=
<>
ct
bw

5 and

6 or

Function

Negation (unary minus)

Multiplication
Division
Modulus (remainder after integer division)
String concatenation (trailing spaces removed)

Addition
Subtraction
String concatenation (trailing spaces preserved)

Equality
Less than
Greater than
Less than or equal to
Greater than or equal to
Not equal to
Contains (string only)
Begins with (string only)

Logical AND

Logical OR

Numeric and alphanumeric constants may be freely used in expressions.
A numeric constant is floating point if it includes a decimal point and
integer otherwise. Alphanumeric constants must be enclosed in single
or double quotes.

Type conversion

Expressions may include fields or constants of different types. Each
operation examines the types of its operands and, if they differ, a type
conversion is performed according to these rules:

1. If either operand is floating point then the other operand is
converted to floating point and the result is floating point.

2. Otherwise, if either operand is integer then the other operand is
converted to integer and the result is integer.

3. An operation is only alphanumeric if both its operands are
alphanumeric.

Sculptor Reference Manual
Screen Form Language

7-704.90

When performing arithmetic operations on m4 or mS fields remember
that their data values are stored in the lower currency unit.

On conversion of real values to the integer types i1, i2, i4 or m4, the
fractional part is truncated. The rounding command may be used to
perform rounding prior to conversion.

Exception traps

Whenever an exception condition arises, Sculptor applies an appropriate
default action. The exception traps allow the programmer to specify an
alternative action if the default is not suitable. Trap clauses have the
syntax:

trap = label

Where trap identifies the condition being trapped and label specifies the
line to transfer control to if the condition occurs. A trap clause forms part
of the command to which it relates and the allowed traps for a particular
command are specified in the syntax of that command.

The available traps are summarised below. Each trap is explained in
detail in the description of the command to which it applies.

Trap Meaning

bs Backspace past first field in input command
eoi The "End of Input" key was pressed
err An external error occured (error code in errno)
ni No change to displayed data on input
no A "no" reply to a prompt command
nrs No record selected
nsr No such record
re Record exists
riu Record in use
yes A "yes" reply to a prompt command

Field lists

Several commands require a field list. There are two types, a screen field
list and a field list. The type to use will be obvious from the context.

7-8 04.90 Sculptor Reference Manual
Screen Form Language

Screen field lists

This is a list of screen field names separated by commas and may also
include ranges of screen fields indicated by a hyphen between the start
and end field names of the range. A range implies all the screen fields
defined in the program between (and including) the named screen fields
in order of their definition. A screen field is defined by a line commencing
with a plus sign "+" (see above).

Field lists

A field list is a list of field names separated by commas. Ranges are not
permitted. Each field name may be from any file or alternative record
layout defined in the program or may be a temporary field.

The key= clause

Commands which read records from a Sculptor keyed file according to
a supplied key value have an optional key:;::: clause. This clause allows
the programmer to specify a field or list of fields which will be
concatenated to form a key value for the operation. If the clause is
omitted, the existing key data in the record buffer is used as the key
value.

If the fields being used in the key= clause are not the same type and size
as the natural key fields for the file, the following rules are applied.

1. If the number of fields in the clause is less than or equal to the
number of key fields then each named field is assumed to supply
data of the correct type for the corresponding natural key field and
no type conversion takes place. Excess bytes are discarded and
insufficient bytes are made up with nullsfor numeric fields and
spaces for alpha fields.

2. If the number of fields is greater than the number of natural key
fields then the data from the named fields is concatenated to form
a key. If the result exceeds the key length then the excess bytes
are discarded. If the result is less than the key length then the
remaining bytes are set to spaces.

Since the file access commands always construct keys according to the
main record layout, considerable care must be exercised when reading
records which have a different key structure to that of the main record
(eg. when using alternate record layouts).

Sculptor Reference Manual
Screen Form Language

04.90 7-9

As the alternate record layout simply overlaps the main record layout,
the recommended method is to assign values to the key fields in the
alternate layout and omit the key= clause entirely.

Command line syntax for cf

ef [-z] filename

Compiles the source file filename.f and produces the file filename.g if
compilation is successful.

The -z option forces fields which contain zero to be shown blank. Zeros
are shown by default. This option may be overridden within a program
through the use of the !zeros declaration.

Command line syntax for sage

sage filename [arguments] ...

Executes the compiled file filename.g. The arguments may be accessed
within the program through the arg special temporary field.

7-10 04.90 Sculptor Reference Manual
Screen Form Language

CONTENTS

I

SCREEN FORM LANGUAGE
COMMAND SECTION

Contents Page

Language functions 7-15
String functions .. 7-15
Numeric functions 7-15
ascO 7-16
centret) / centerO 7-17
chdirO 7-18
chrt) 7-19
dirnf) . 7-20
incharO 7-22
instrO 7-23
keycodeO 7-24
leftO 7-26
powerO 7-27
randt) 7-28
removeO 7-3D
rightO . 7-3'-1
setstrO 7-32
strlenO 7-33
sqrtt) .. 7-34
tolowerO 7-35
touppen) 7-36

Language declarations . 7-37
!at .. 7-37
!box 7-38
!cfile 7-39
!depth 7-41
!file .. 7-42
!handles 7-44
!highlight 7-46
!option 7-47
!record 7-48
!screen 7-51
!scroll . 7-52
!temp 7-55
!width . 7-60
!zeros 7-61

Sculptor Reference Manual
Screen Form Language

04.90 7-11

Contents

Language commands
at ...
autocr .
autogoi
autohelp
bell
cancel
chain
check
clear.
clearbuf
clearbox
close
close #
decdate
delete .
display
drawbox
editmode
encdate
end
error
exec
exit
find
get #
gosub
goto .
hangup
highlight
hline
if
input.
insert
interrupts
inputerr
let ..
lock ..
match .
message
newform
next ..
nextkey
on ...
on global

Page

.7-62

.7-62

.7-63

.7-64

.7-65

.7-66

.7-67

.7-68

.7-69

.7-70

.7-72

.7-73

.7-75

.7-76

.7-77

.7-78

.7-79

.7-80

.7-82

.7-83

.7-84

.7-85

.7-86

.7-88

.7-89

.7-91

.7-93

.7-94

.7-95

.7-96

.7-97

.7-98
7-100
7-106
7-107
7-108
7-109
7-110
7-111
7-112
7-113
7-114
7-115
7-116
7-117

7-12 04.90 Sculptor Reference Manual
Screen Form Language

Contents Page

on INTERRUPT
on local
open .
open #
opthelp
pause
preserve
prev
prevkey
prompt
put# .
read
readkey
redraw
return ..
rewind .
rewind #
rounding
screen
scroll
skip
sleep
testkey
unlock
validhelp
vdu ..
vline .
wake up
write .

.7-118

.7-119

.7-120

.7-121

.7-122

.7-123

.7-124

.7-125

.7-126

.7-127

.7-128

.7-130

.7-131

.7-132

.7-133

.7-134

.7-135

.7-136

.7-137

.7-138

.7-139

.7-140

.7-141

.7-142

.7-143

.7-144

.7-145

.7-146

.7-147

Sculptor Reference Manual
Screen Form Language

04.90 7-13

Screen form language functions

Functions in Sculptor are commands that return a value. Some functions
return string (alpha) values, others return integer or floating point values.
Functions may be used wherever an expression of the returned type is
valid. A summary of the available functions by return type is shown below
and a detailed description of each function in alphabetic order follows.

STRING FUNCTIONS

The length of the alpha field returned is determined by the length of the
field in which the return value will be stored (with the exception of chr).
The setstr function does not directly return a value.

Function Return type

centreO
centert)
chrO
leftO
rightO
setsrrt)
tolowerO
toupperf)

alpha
alpha
alpha
alpha
alpha
no returned value
alpha
alpha

NUMERIC FUNCTIONS

Function Return type

asct)
chdirt)
dirru)
inchart)
keycodeO
powerO
randt)
remover)
strlenO
sqrtt)

i1 integer
i1 integer
i2 integer
i2 integer
i2 integer
rs real
i2 integer
i1 integer
i1 integer
r8 real

Sculptor Reference Manual
Screen Form Language

04.90 7-15

asc() Return the ASCII value of first character in string

SYNTAX

asc(text expreesion ;

DESCRIPTION

Returns the ASCII value (in the range 0-255) of the first character in the
text expression. If the text expression is empty, the value 0 is returned.

RETURN TYPE

This function returns an integer in the range 0-255 which may be safely
stored in an i1 type.

7·16 asc() 04.90 Sculptor Reference Manual
Screen Form Language

Return a string centred in its field width centre{}

SYNTAX

centre I center (text expression v

DESCRIPTION

Both centre and center function identically.

This function centres the text expression by padding with spaces within
the width of that expression and returns the centred text and all padding
spaces.

RETURN TYPE

This function returns an alpha type.

EXAMPLE

!temp fx, ,a12
+fx,fx,lO,35

fx = "TEST"
display fx
fx = centre(fx)
display fx

/* will display "TEST " */

/* will display " TEST " */

Sculptor Reference Manual
Screen Form Language

04.90 centreO 7-17

chdirO Change the current working directory

SYNTAX

chdir(pathname)

DESCRIPTION

Change the current working directory to that specified in pathname. The
pathname may be a string constant or a strinq expression. If an error
occurs changing directory an error code is returned, otherwise 0 is
returned. Your program must assign the return value to a field.

The values which may be returned are:
o No error occurred.
1 The directory given in pathname could not be found.
2 Access permission to read could not be gained for the named

directory.

RETURN TYPE

This function returns an integer type in the range 0-2.

NOTES

The directory change is valid until the program exits or until a
further chdir is succesfully executed.

On DOS systems, the current directory will remain valid even when
the current program exits.

EXAMPLE

!temp x, ,il
x = chdir("/tmp/data")
if x<>O then put "CHDIR failed - error ";x exit
message "CHDIR succeeded"

7-18 chdirO 04.90 Sculptor Reference Manual
Screen Form Language

Return a single character from an ASCII code chr{)

SYNTAX

chr{ numeric expression)

DESCRIPTION

Returns a single character which is the ASCII representation of numeric
expression. The expression must be in the range 0-255.

RETURN TYPE

This function returns a single character (a1) string.

NOTES

The use of characters outside the standard ASCII range 0-127 is
non-portable as some systems do not support these characters.

EXAMPLE

!temp crlf, ,a2
!temp init, ,alO

crlf = chr(13)+chr(lO)
init = chr(27)+' ['+chr(11)+"INIT"+chr(7)+chr(90)
put #5,init /* send it to channel 5 */

Sculptor Reference Manual
Screen Form Language

04.90 chrt) 7-19

dime Return the number of elements in a subscripted
field

SYNTAX

dim(field)

DESCRIPTION

Returns the number of elements in the subscripted field field. Returns 1
if the field is not subscripted.

RETURN TYPE

This function returns an integer in the range 0-32767 which can be safely
stored in an i2 field.

EXAMPLE

for (ctr=l ; ctr<=dirn (fieldnarne) ; ctr=ctr+l) {
scroll ctr : input fieldnarne

7-20 dimO 04.90 Sculptor Reference Manual
Screen Form Language

Returns a sub-string from a string getstr{)

SYNTAX

getstr(source, pas, fen)

DESCRIPTION

Returns the sub-string of source which starts at position pas and is fen
characters in length.

The first character in source is always position 1.

If pas is less than 1 or greater than the length of source, a null string is
returned.

If fen is greater than the number of characters remaining from pas, only
those characters remaining are returned.

RETURN TYPE

This function returns an alpha type.

EXAMPLE

/* this example determines the date of birth from a */
/* DVLC driver number in format SMITH611270D67FR */

!temp dvlc,Driver number,a16
!temp dab, Date of birth,d4

year=(getstr(dvlc,6,l)+getstr(dvlc,ll,l))
month=getstr(dvlc,9,2)
day=getstr(dvlc,7,2)
encdate(dob)
if d6b=O then message "Error in driver number" exit

Sculptor Reference Manual
Screen Form Language

04.90 getstr() 7-21

inchar() Return the ASCII value of the next character from
a sequential input channel

SYNTAX

inchar(channel)

DESCRIPTION

Returns the ASCII value (in the range 0-255) of the next character from
channel. If channel is zero, standard input is used. If channel is not zero,
the channel must have been opened with the open# command. This is
a low level function that does not perform any special recognition of
separator characters.

RETURN TYPE

This function returns an integer which may be stored in an i2 or an i4
field.

NOTES

The channel number must be in the range 0-32.

If an error occurs (such as end of file) incharO returns -1.

All characters are input, including separator characters.

EXAMPLE

This example is complete and demonstrates writing a sequential file with
data and reading that file using lnchart).
Demonstration of inchar
!temp a, ,i2
!temp ctr, ,i4 .

open #1, "TESTING.TST" write
put #l,"ABCDEFGHIJK","LMNOPQRST","UVWXYZ"
close #1
open #1, "TESTING.TST" read
for (ctr=1;ctr<=30;ctr=ctr+l)

a=inchar(l)
put .a, chr (a),

close #1
exit

7-22 tnchart) 04.90 Sculptor Reference Manual
Screen Form Language

Search for a pattern in a string instr()

SYNTAX

instr(string, startpos, pattern)

DESCRIPTION

Searches for a pattern in string starting at character startpos. Returns 0
if the pattern was not found or an integer indicating the position in string
where the match was found. Character positions start at 1.

RETURN TYPE

This function returns an integer in the range 0-255.

NOTES

Case is significant.

If the length of pattern is greater than the length of string, no match
can be found and this function will always return o.
Trailing spaces are removed from pattern for the purposes of the
search.

EXAMPLE

This example is complete and demonstrates string searching.
Demonstration of Instr()
!temp a, ,a20
!temp b, ,a20
!temp s, ,i2
!temp x, ,i2
+a,Source String,10,35
+b,Search for,11,35
+s,Start at,12,35

~' +x,Found starting at,14,35
LOOP input a,b,s bs=QUIT

if s=O then s=1
x=instr(a,s,b)
display x
goto LOOP

QUIT exit

Sculptor Reference Manual
Screen Form Language

04.90 instrO 7-23

keycode() Await a key press and return a code

SYNTAX

keycode(mode)

DESCRIPTION

The modes currently available are 0 and 1.

keycode(O) awaits a single key press, attempts to recognise the key and
returns a code according to these rules.

If the key pressed corresponds to one of the "Sent by" sequences
defined in the vdu parameter file, keycodeO returns a negative
number which is the complement of the entry number from the vdu
parameter file corresponding to 'the key pressed. This can be used
to identify special keys in a fully portable manner.

If the key pressed was not recognised and was a character in the
ASCII range 0-255 then the ASCII code for the character is
returned as a positive number.

If the key pressed was not recognised and did not return a single
ASCII value, keycodeO returns -1.

keycode(1) returns immediately with a positive integer which indicates
the the key that was pressed to exit the last input command.

The value returned will be the entry number in the vdu parameter
file which corresponds to the recognised key. Again this
mechanism allows full portability between vdu types.

If there was no previous input command, keycodeO returns -1.

NOTES

It is common practice to negate the value returned from keycodeO
when mode is one, so that a standard set of manifest constants
may be used to define key press values.

If autocr is on and an input is exited with a character keypress,
keycode(1) will assume CR was pressed.

7-24 keycodeO 04.90 Sculptor Reference Manual
Screen Form Language

RETURN VALUE

This function returns an integer in the i2 range and should not be stored
in an i1 field.

EXAMPLE

This example demonstrates single keypress input using keycode(O).

!temp x, ,i2
!define CR -66
!define ESC -9
!define Fl -81

x=keycode(O)
switch (x) {

case message "CR Pressed"
break

case ESC: message "ESC pressed"
break

CR:

case Fl: message "Fl pressed"
break

The following example demonstrates the use of keycode(1) to
decrement a counter if the user exited the input with an UP-ARROW or
to increment a counter if the user exited the input with a DOWN-ARROW
or CR.
!temp x, ,i2
!temp ctr, ,i4
!temp a,a,a12
!temp b,b,a12
+a,,10,30
+b" 12,30
+x,Key press value,14,30
+ctr,Counter,15,30
!define UPARROW -64
INP
NXT

input a,b bs=NXT
x = -keycode(l) /* negate so that we can use

consistent !defines for mode 0
and mode 1 of keycode() */

if x=ESC then exit
if x=UPARROW then ctr=ctr-l else ctr=ctr+1
display a,b,x,ctr
goto INP

Note that in this example the SS trap was present but effectively ignored.
Without a SS trap, the user would NOT have been able to exit the input
statement using the UP-ARROW key.

Sculptor Reference Manual
Screen Form Language

04.90 keycodeO 7-25

left() Return a string left justified

SYNTAX

left{ text expression)

DESCRIPTION

Left justifies a text expression within its field width, ie. removes any
leading spaces.

RETURN TYPE

This function returns an alpha type.

EXAMPLE

!t.emp lj, ,a30

+a, Name, 10',20

input lj

lj=left (lj)

display lj

7-26 letto 04.90 Sculptor Reference Manual
Screen Form Language

Raise a number to a power powert)

SYNTAX

power(number, exponent)

DESCRIPTION

Returns number raised to exponent. Both number and exponent may be
numeric expressions of any type.

RETURN TYPE

This function returns a real (r8) type.

EXAMPLE

!temp rr, ,r8
!temp ctr, ,i2

for (ctr=l ; ctr<=lO ; ctr=ctr+l) {
rr=power(lO,ctr)
put rr

Sculptor Reference Manual
Screen Form Language

04.90 power() 7·27

rand() Return a pseudo-random number

SYNTAX

rand(seed)

DESCRIPTION

If seed is zero, this function returns a pseudo random number in the
range 0 to 32767. If seed is non-zero, the generator will use seed to set
the start point for all following number sequences and the first number
in that sequence will be returned.

To ensure that the number sequence that is returned varies from one
execution of the program to another, the number generator must be
"seeded" with a number that is fairly random at the start of the program.
The systime special temp field may be used for this purpose. All further
calls to randt) should be made with a zero seed to get the next random
number in the sequence.

RETURN TYPE

This function returns an i2 type.

NOTES

As with all pseudo-random number generators, the number
sequence is identical for any particular seed.

The actual pseudo-random number sequence for a given seed
may vary on different machines.

To return .a random number within a predefined range use the
modulus function, ie (rand(O)% 100) + 1 would return an integer
between 1 and 100.

EXAMPLE

In the example below, note that the seeding of the random number
generator is done outside the loop.

7-28 randt) 04.90 Sculptor Reference Manual
Screen Form Language

!temp rnd, ,r8
interrupts on
rnd=rand(systime)

TOP display rnd
rnd=rand(O)
goto TOP

/* our only way out! !! */
/* seed the generator */

/* get next random number */

Sculptor Reference Manual
Screen Form Language

04.90 randt) 7·29

remove() Remove a file from disk storage

SYNTAX

remove(filename)

DESCRIPTION

Delete the named file from disk storage. The fifename may be a full
pathname or just the file name and must be a string constant or a text
expression. If an error occurs removing the file an error code is returned,
otherwise 0 is returned. Your program must assign the return value to a
field.

The values which may be returned are:

o No error occurred. The file was removed.

1 The file could not be found.

2 Write permission could not be gained for the named file or
path.

RETURN TYPE

This function returns an integer type in the range 0-2.

NOTES

This function will remove a single file only. Wildcard expansion is
not allowed. If multiple files need to be removed, use the exec
command and an operating system command to perform the task.

This function provides a portable mechanism to remove named
files.

EXAMPLE

Demonstration of Remove
-!temp x, ,il

x ~ remove ("/tmp/data/junkC06.dat")
if x<>O then put "REMOVE failed - error ";x exit
message "REMOVE succeeded"

7-30 removeO 04.90 Sculptor Reference Manual
Screen Form Language

Return a string right justified right()

SYNTAX

right(text expreesion)

DESCRIPTION

Right justifies a string within its field width.

RETURN TYPE

This function returns an alpha type.

EXAMPLE

!temp rj"a30
+rj,Title,lO,20

input rj
rj=right(rj)
display rj

Sculptor Reference Manual
Screen Form Language

04.90 rightO 7-31

setstr(} Store a sub-string within another string

SYNTAX

setstr(dest, pas, fen, source)

DESCRIPTION

Place fen characters from the string source into string dest over-writinq
the characters in dest starting at position pas.

This function differs from the others in that it does not directly return a
value.

The string dest must be an alpha field, source must be an alpha field or
a string constant and pas and fen must be either numeric constants or
expressions.

RETURN TYPE

This function does not directly return a value and it is an error to attempt
to use this function as if it returned a value.

NOTES

The first character in dest is position 1. If pas is less than 1 or
greater than the length of dest then this function is ignored.

The string dest is over-written with the characters from source for
fen characters or until the end of source, whichever occurs first.

EXAMPLE

!temp full, ,a7
!temp code, ,a4,+OOOO
!temp ctr, ,i2

full="STK"
fori ctr=l; ctr<=lO ; ctr=ctr+l) {

code=ctr
setstr (full, 4,4,code) /* STK0001, STK0002, etc */
pu't; full,

/* force zero padded string */

prompt : exit
7-32 setstrt) 04.90 Sculptor Reference Manual

Screen Form Language

Return the length of a string strlen{)

SYNTAX

strlen(string)

DESCRIPTION

Returns the length of the characters in string with trailing spaces
excluded.

RETURN TYPE

This function returns an integer in the range 0-255 which may be safely
stored in an i1 field.

NOTES

This function will return 0 if the string does not contain any data.

EXAMPLE

The following example is complete.

Demonstration of strlen
!temp a, ,a50
+a,String,lO,30
TOP input a bs=END

message "String Length
goto TOP

". put strlen(a};

END exit

Sculptor Reference Manual
Screen Form Language

04.90 strlen() 7-33

sqrt() Return the square root of a number

SYNTAX

sqrt(numeric expression)

DESCRIPTION

Returns the square root of the numeric expression. Returns zero if the
expression is zero or negative.

RETURN TYPE

This function returns a real (r8) value.

7-34 sqrtt) 04.90 Sculptor Reference Manual
Screen Form Language

Return a lower case version of a string tolower()

SYNTAX

tolower(texr expression i

DESCRIPTION

Returns the text with all characters in the range "A" - "Z" converted to
lower case.

RETURN TYPE

This function returns an alpha value.

EXAMPLE

!temp a, ,a20
a="This is a MIXTURE 12"
a=to1ower(a)
message a /* "this is a mixture 12" */

Sculptor Reference Manual
Screen Form Language

04.90 tolowerO 7-35

toupper{) Return an upper case version of a string

SYNTAX

toupper(textexpression)

DESCRIPTION

Returns the text with all characters in the range "a" - "z" converted to
upper case.

RETURN TYPE

This function returns an alpha value.

!temp a, ,a20
a="This is a MIXTURE 12"
a=toupper (a)
message a /* "THIS IS A MIXTURE 12" */

7-36 toupperO 04.90 Sculptor Reference Manual
Screen Form Language

Declare the cursor position for a graphics
command

!at

SYNTAX

!at row,column [:] graphics-command

DESCRIPTION

Sets the cursor position as point of origin for one of the graphics
commands. The row number starts from the top of the screen, the column
number starts from the left hand edge of the screen. This declaration
also associates the graphics command with a particular screen.

The graphics commands which may be used with !at are:

drawbox depth, width [{ title } 1
hline length, style
vline length, style

Graphics commands declared in this way form part of the display of the
current screen and will be displayed when the screen is turned on and
removed when the screen is turned off. The current screen is that defined
by the last !screen declaration.

When the drawbox command is used with !at, a title may be optionally
specified, enclosed in braces. This title will appear centred on the top
line of the box.

NOTES

If the row or column exceeds the screen limits, the command will
be ignored.

EXAMPLE

!screen 3
!at 7,20; hline 40,1

SEE ALSO

!screen, screen, drawbox, hline, vline.

Sculptor Reference Manual
Screen Form Language

04.90 !at 7-37

!box Define screen field delimiters

SYNTAX

!box delimiters

DESCRIPTION

This optional statement defines non-standard characters to enclose the
screen form fields. If one character is specified then it is used both to
open and close each field. If two characters are specified, the first
character is used to open the field and the second character is used to
close it.

When no !box statement is included in the program, sage uses the
default characters, normally "[]", but this default may be altered using
the language configuration program Icf.

NOTES

The box delimiting characters may be effectively disabled (set to
spaces) by using a space between two quotation marks.

If delimiters are set to spaces, the attributes to start and end left
and right box delimiters are not issued. These may be forced by
setting "Enter 1 to force left/right box sequences" (38) in the
vdu parameter file to 1.

Field delimiters are common to all screen overlays throughout the
program.

EXAMPLES

!box
!box "I I"
!box <>
!box
!box { }

!box I I

Disable field delimiters
Use vertical bar delimiters
Use angled brackets
Use colons as left and right
Use braces
Use vertical bar delimiters

7-38 !box 04.90 Sculptor Reference Manual
Screen Form Language

Declare a file which is initially closed !cfile

SYNTAX

!cfile file_id [pathname 1

DESCRIPTION

Declares a Sculptor keyed file which is closed when the program starts.
See!file for declaring files which are initially open. The file_id may be
alphanumeric or just numeric and is used as an identifier to refer to the
file in subsequent file access commands. The pathname may be omitted
if the file_id is also the file name and the file resides in the current
directory. The file_id must not be a reserved word.

The index and data files must exist when the program is run (see the
program newkf for creating new files) and its data dictionary file must
exist when the program is compiled. sage will look for the file in the
current working directory unless a full pathname is supplied as the
filename. Both the data file and its associated index file must exist in the
same directory.

It is important to note that sage temporarily opens each !cfile when it
loads the program. If it has already opened the maximum number of files
permitted by the operating system then the program will abort. For this
reason, !cfile declarations should precede !file declarations.

The maximum number of files that may be declared in one program using
!cfile and !file is 32.

NOTES

The open command is used to open files which are initially closed.
If the number of open files would exceed the limit set by the
operating system, the open will fail and the program will terminate
with a "Cannot open ... " error.

A compiler error will result if the file_id is not unique, is a reserved
word or is used as a temporary field or line label later in the
program.

04.90 !efile 7-39Sculptor Reference Manual
Screen Form Language

The SAGEDATA environment variable, if declared, is prepended,
at run-time, to the name of any file declared within a screen form
program.

EXAMPLE

!cfile stk ../data/stock
!cfile control

7-40 !efile 04.90 Sculptor Reference Manual
Screen Form Language

Define screen depth !depth

SYNTAX

!depth rows

DESCRIPTION

This optional statement defines the screen depth (number of rows)
required. If no !depth statement is present, the default Standard Depth
from the vdu parameter file is used.

The only effect of this statement is to cause sage to reconfigure the
screen to a larger or smaller number of rows using the sequence Set·
standard screen depth (5) or Set extended screen depth (6)
respectively from the vdu parameter file.

NOTES

If the number of rows required exceeds the standard depth (set in
the vdu parameter file) the vdu sequence to set extended depth is
issued. If there is no extended depth set in the vdu parameter file,
this declaration is ignored.

If the rows required exceeds the extended depth, the extended
depth will be set.

This declaration is evaluated at run-time using the vdu parameter
file.

EXAMPLE

!depth 255

If the standard depth is 24 and extended is 25,
the vdu will be set to 25 lines.
If the standard depth is 25, the sequence to set
standard depth is issued.
if the vdu has a maximum extended depth of 43,
this will be set.

!depth 25

!depth 25

SEE ALSO

.lwidth

Sculptor Reference Manual
Screen Form Lllnguage

04.90 !depth 7·41

!file Declare a Sculptor keyed file which is initially
open

SYNTAX

!file file_id [path name]

DESCRIPTION

Declares a Sculptor keyed file which is open when the program starts.
See lcfile for declaring files which are initially closed. The file_id may be
alphanumeric or just numeric and is used to refer to the file in subsequent
file access commands. The pathname may be omitted if the file_id is also
the file name and the file resides in the current directory. The file_id may
not be a reserved word.

The file must exist when the program is run (see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled (see the program describe). sage will look for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file (.k extension) must exist in the same
directory.

If there are no commands in the program which can update the file and
if the record locking mechanism of the operating system permits, then
the file is opened in read-only mode, otherwise it is opened in update
mode.

The maximum number of files that may be declared in one program using
ifile, and ictlle is 32. The maximum number of these files that may be
open at the same time is also 32, but is dependant on the operating
system. Under MSDOS version 3.3 and above up to 32 Sculptor keyed
files may be open simultaneously through the use of the !handles
declaration (see page 7-44).

NOTES

Each normal Sculptor keyed file requires two operating system
files - one for the data file and another for the index file. A Sculptor
index only file (created using newkf -i) requires only one operating
system file.

7-42 !file 04.90 Sculptor Reference Manual
Screen Form Language

The SAGEDATA environment variable, if declared, is prepended,
at run-time, to any file name specified.

SEE ALSO

!cfile

EXAMPLE

!file order
!file cust customer
!file stk ../data/stock
!file inv /usr/ord/data/invoice

Sculptor Reference Manual
Screen Form Language

04.90 !file 7-43

!handles Set the DOS file handle limit

SYNTAX

!handles number

DESCRIPTION

Effective on DOS version 3.3 upwards. On earlier versions of DOS and
on other systems, this declaration is ignored.

Sets the number of file handles available to the current program to
number and thus defines the maximum number of files which the program
can have open. The default number of handles per program is 20.
Requesting more handles causes the program to use more memory.
Requesting less than 20 handles does not save memory. To calculate
the number of handles that a program needs, the following must be taken
into account:

1. Four handles are required for the standard channels STDIN,
STDOUT, STDERR and STDPRN. (The STDAUX channel is
closed by sage on startup.)

2. Each open Sculptor keyed file requires two handles (one for the
data file and one for the index file). An index only Sculptor file
requires only one handle.

3. Each open sequential file requires one handle.

The total number of handles available in the system is set by the FILES=
entry in CONFIG.SYS. This must be set high enough to support all loaded
programs. For example, if a program sets !handles to 30 and then
executes a child task which sets !handles to 40, the FILES= entry in
CONFIG.SYS must be at least 70.

The maximum value for FILES is 99 in DOS versions 2.x and 255 in DOS
versions 3.x. Prior to DOS 3.3, the maximum number of handles available
to anyone program is 20.

7-44 !handles 04.90 Sculptor Reference Manual
Screen Form Language

NOTES

This declaration may be used to allow a program to open up to 32
Sculptor keyed files simultaneously. The limit of 32 is set by
Sculptor. The default number of handles (20) effectively limits a
program to eight Sculptor keyed files.

If there are insufficient handles left in the system, the !handles
declaration allocates as many as it can.

If an open command fails due to insufficient handles, the program
will abort with operating system error number 4.

EXAMPLE

/* This program opens:
16 Sculptor keyed files (32 handles)
5 Sculptor index only files (5 handles)
4 sequential files (4 handles)

*/
!handles 45 /* allowing for STDIN, etc. */

Sculptor Reference Manual
Screen Form Language

04.90 !handles 7-45

rhighlight Highlight field areas on input

SYNTAX

!highlight form I field

DESCRIPTION

This declaration causes field areas to be highlighted using the Start form
highlight (167) and End form highlight (168) sequences. Either form
or field may be selected.

If form is chosen, the limits of 911 displayed input field areas are
highlighted. This has the effect of showing the width of all fields.

If field is chosen only the current input field is highlighted. As soon as
input for the particular field is complete, highlighting is switched off and
the field is displayed with the Start normal data (32) and End normal
data (33) sequences.

For best visual effect when using highlight mode, the box delimiters may
be changed by the programmer to space characters using a !box
declaration.

NOTES

The video attributes of the highlight are set by the relevant entry
in the vdu parameter file (167 and 168).

EXAMPLE

!highlight form
!highlight field

SEE ALSO

!box

7-46 !highlight 04.90 Sculptor Reference Manual
Screen Form Language

Modify the option line !option

SYNTAX

!option modifier

DESCRIPTION

modifier has one of the following forms:

line option-row [,prompt-row]

where option-row and prompt-row are valid vdu row numbers which
define the screen rows to be used to display the program options and
the option prompt respectively. If the If the prompt-row is not specified,
the line after the option-row is used to display the option prompt
message.

prompt "text"

where text is the new prompt text. This changes the default prompt
text of "Which option do you require".

block

sets the point-&-pick method of selecting an option.

NOTES

If a !option declaration with the same modifier occurs more than
once, the last declaration encountered is used.

To suppress the prompt text completely, use !option prompt ""

The prompt-row is also the default row for the prompt command.

EXAMPLE

!option line 20,22
!option text "Please choose one"

SEE ALSO

optline, opthelp

Sculptor Reference Manual
Screen Form Language

04.90 !option 7-47

!record Declare an alternative record layout

SYNTAX

!record file_id pathname

DESCRIPTION

This command is used to declare an alternative record layout for the file
referred to .by the file_id (previously declared in a !file or !cfile
statement). Th'e pathame identifies an alternative descriptor file created
with the program describe. Both sets of field names may be referred to
in subsequent program statements. Up to eight !record statements may
be associated with each file.

The use of alternative record layouts allows variable record types on a
single file. The usual mechanism for an alternate record is to have the
same key structure as the main record and for the key to include a record
type field. The program may then display and input the appropriate set
of fields depending on the type. Alternative record layouts are useful not
only for completely different record types contained in the same file, but
also for redefining the structure of individual fields to enable access to
their component parts.

Alternative record layouts must have the same key length as the main
record and it is strongly recommended that the key structure is also
identical to avoid ambiguity. If a different key structure is used, do not
use the !record key fields in a key= clause, since sage will build the key
assuming that these fields are supplying values for the main key fields.
Instead, assign values to the alternative key fields, which overlay the
main key fields in the record buffer, and omit the key= clause.

Note that the clear command (with no arguments) initialises each file's
record buffer according to the main record layout (i.e. the !file
declaration) with alphanumeric fields being initialised to spaces and
numeric fields to nulls.

7-48 !record 04.90 Sculptor Reference Manual
Screen Form Language

NOTES

Using an alternative record layout does not require any additional
files at run-time. The descriptor (.d) file for the alternate record
layout must be present when the program is compiled.

Accessing the component parts of numeric fields is permitted, but
may not return the values expected due to differences in byte
ordering between your system and the Sculptor standard.

EXAMPLE

File std has been described (and created with newkf) with a record
length of 6 bytes as follows:
Key: std key,Key,il
Data: std=data,Data,a5
File rec1 defines an alternative record layout for std and has been
described as follows:
Key: reel key, ,il
Data: reel-datal, ,i2

reel-data2, ,a3

File rec2 defines an alternative record layout for std and has been
described as follows:
Key: ree2 key, ,il
Data: ree2-datal, ,i2

ree2 data2, ,i2
ree2-data3, ,il

Within a program, a single record buffer is maintained for each keyed
file. The main file layout and any alternate record layouts are mapped
onto that buffer based on the field name used.

----~- ...- ...--...-...-

std BUFFER reel ree2
std key ----. reel key ree2 key- 6r-- -

~ bytes ree2- -
datal

std data ----+ of
- -

raw
f-- -

data
f-- -

Sculptor Reference Manual
Screen Form Lanauaae

04.90 !record 7-49

The only storage space that is allocated is that required for the buffer.
The use of the field name will determine the method by which the bytes
are accessed in that buffer. From the diagram above, using the field
name reel_datal will access the second and third bytes of the buffer
as an i2 value, similarly, using std_data will access the second through
sixth byte of the buffer as an a5 value.

Clearing std_data and displaying the field ree2_data3 will show that it
contains the value 32. This is because the clear has filled the buffer with
spaces (5 of them) and the byte (i1) value for the space character is 32.

Alternate record layouts provide immense flexibility but require
considerable care in their implementation.

7-50 !record 04.90 Sculptor Reference Manual
Screen Form Language

Declare a screen overlay !screen

SYNTAX

!screen number [, number ... 1

DESCRIPTION

number may be an integer constant in the range 1-8.

Up to 8 screen overlays may be declared for use within the one sage
program. Each overlay has access to the whole display area and may
contain screen fields, graphic lines and graphic boxes.

All graphics declarations and box definitions which follow a !screen
declaration belong to that screen and are automatically drawn when the
screen is turned on or redrawn, and removed when the screen is turned
off.

A numbered screen is switched on by use of the screen command. When
a screen associated with a !at ... : drawbox declaration is switched on
the underlying display is temporarily cleared to the extent of the graphics
rectangle. The data that was within the rectangle is stored and will be
re-displayed when the overlaid screen is turned off.

An error occurs if an attempt is made to execute an input statement for
a field associated with an inactive screen. In this case the message
"Attempt to access an inactive screen" is displayed and control returns
to the prompt line.

Use of multiple screen numbers causes the graphics and screen field
declarations which follow to belong to all the numbered screen overlays.

EXAMPLE

!screen 3
!at 5,3 : drawbox 12,10
+code,,13,12
!screen 5,7,8
!at 7,8 : drawbox 10,10
+std_name,,12,20
!screen 1,5
!at 7,8 : drawbox 10,12

Sculptor Reference Manual
Screen Form Language

04.90 !screen 7-51

!scroll Define a global scroll area

SYNTAX
!scroll heading_line, depth

DESCRIPTION

Defines an area on the screen in which data is displayed in columns. The
scroll area may be used to simultaneously display the values in
subscripted fields or to display data from more than one record at a time;
for example from a transactions file. Only one scroll area may be defined
in a program.

The heading line indicates the screen line on which the field headings
are to be displayed as column headings. The depth parameter specifies
the number of fields required in each column. A field is included in the
scroll area by giving it a line co-ordinate equal to the heading line in the
!scroll statement.

Note that a field whose line co-ordinate exceeds the heading line but is
within heading line + depth, displays as a single field, so the scroll area
need not reserve the whole width of the screen.

The line within the scroll area on which data is displayed is controlled by
the special temporary field scrline, whose value is maintained with the
scroll command. If the value in scrline exceeds the depth of the scroll
area, then a wrap around takes effect automatically.

NOTES

If an array field is used without an explicit subscript, the current
value of scrline is used to determine the array element to use.

The scroll area will be present on all screen overlays. If a screen
field in any screen has a row co-ordinate equal to heading_line,
then it will be replicated depth times at it's column position.

7-52 !scroll 04.90 Sculptor Reference Manual
Screen Form Language

EXAMPLE

This example is complete except for the posting section and serves to
demonstrate three major points.

The array stk _code is considerably larger than the depth of the
scroll area so automatic array paging in the scroll area is
demonstrated.

The field stk _ctr does not form part of the scroll area, and is
displayed to identify the array line number being edited.

The scroll area is global to all screen overlays used, and the
LOOKUP subroutine demonstrates use of the scroll area on a
second screen overlay.

This example has been simplified to conserve space.
Stock System : Goods Received Input

stk_gri.f

Receives a list of stock codes and quantities in
stk code and stk qty arrays and posts them to stock file.

!file STK stock
!scroll 6,15
!temp ct.r , i2
!temp key"i2
!temp stk ctr,Entry number,i2
!temp stk-max,Last entry,i2
!temp stk-code,Stock codes,a9(100)
!temp stk qty,Quantity recd.,i4(100)
!screen 1
+stk codes,,6,6
+stk-qty,,6,20
+stk-ctr,,9,50
+stk-last,,11,50
!screen 2
!at 4,40 : drawbox 18,38
+f stk code,,6,48
+f=stk=desc,,6,60
!define ESC -9

/* lookup and posting */

/* general counter */
/* key press */
/* current entry line*/
/* last entered line */
/* allow 100 max */

/* stock code from file
/* short description
/* ESC entry in VDU file

*/
*/
*/

Program Options I=Input, P=Post, E=Exit
*I=Input

clear
gosub STK ARRAY INPUT
end

Sculptor Reference Manual
Screen Form Language

04.90 !scroll 7-53

*P=Post

*E=Exit

SAFE

if stk last=O then \
error "No data input" : sleep 2 : end

gosub POST
end

/* not included here */

if stk last<>O then \
-prompt "Data entered! - ABANDON " no=SAFE

exit
end

SUBROUTINES

STK ARRAY INPUT
stk ctr=O : stk last=O : ctr=O
on local FI gosub LOOKUP
for(stk ctr=l; \

stk-ctr<=dim(stk code);
stk-ctr=stk ctr+l) {

scroll stk ctra LOOP

a BS

a EOI

LOOKUP

L LOOP

L RET
GETKEY

display stk ctr-stk qty
input stk code, stk-qty bs=a BS eoi=a EOI
display stk_code, stk qty
if strlen(stkcode)=O or stk qty=O then \

stk ctr=stk ctr-l : continue
if stk ctr>stk last then stk last=stk ctr
continue
stk ctr=stk ctr-l
if stk ctr<l then goto a EOI
goto a-LOOP

if stk last<>O then \
prompt "Entries complete" no=a LOOP

return

return

screen 2 on
rewind STK : ctr=O
next STK nsr=L RET : display f stk code,f stk desc
ctr=ctr+l : scroll ctr
if ctr%16=0 then \

gosub GETKEY : \
if key=ESC then screen 2 off

goto L LOOP
return

return
key=keycode (0) : return

7-54 !scroll 04.90 Sculptor Reference Manual
Screen Form Language

Declare a temporary field !temp

SYNTAX

!temp name, [heading], type&size [(dim)], [format]

DESCRIPTION

Declares a temporary field for use within the program. name may be any
valid field name. heading is optional and will be the heading that is used
by default if the field is placed on the screen. The type&size are any valid
Sculptor data type and may be dimensioned as an array field. format may
be any valid format string (see page 7-4).

A temporary field may be subscripted, in which case the element
accessed can either be determined by the current value of the special
temporary field scrline, or by using standard subscripts. If either scrline
or the subscript exceeds the field's dimension then a wrap around takes
effect.

Once defined, temporary fields may be treated in the program in the
same way as record fields.

A temporary field may be declared with a type&size of aO, i.e. an
alphanumeric field of zero length. If a screen field is declared for the field,
the field itself is suppressed, but the heading appears to the left of the
field's imaginary position and is a convenient way of displaying static
textual information on the screen. Headings are not removed by a clear
command.

NOTES

No temporary field may exceed 32,767 bytes in size.

When a global clear is performed, any temporary fields in screen
fields are cleared but temporary fields which are not shown on the
screen are not cleared.

Field headings and formats that contain punctuation characters
shoudl be enclosed in quotes.

The scope of a temporary field is the entire program.

Sculptor Reference Manual
Screen Form Language

04.90 !temp 7-55

Special temporary fields

The following special temporary fields are available. These are
automatically declared but may be redeclared if required.

!temp arg, ,aO

Accesses the command line arguments. The values in arg cannot be
altered. Reference to a non-existent value returns an empty string.

Command line: sage cust ABC 1000
var1 = arg[l]
var2 = arg[2]
scroll 3 : var3 arg
var4 = arg[4]

/* "sage"
/* "cust"
/* "ABC"
/* "1000"

*/
*/
*/
*/

!temp date, ,d4

The system date. If this field is directly assigned, automatic updating from
the system date will cease for the duration of the program.

!temp errno, ,i2

Error number returned from last err= trap. The file errors.h located in
the Sculptor include directory contains manifest constant definitions of
the errors which may be encountered. It may be included (using
!include) in your program. The errors are listed below.

No Meaning Manifest constant Command

bad channel - range is 0-32 BAD_CHANNEL get #, put #,
open #,
close #

2 in use - file is already open IN_USE open #
3 bad name - not a string BAD_NAME open #
4 file cannot be accessed NO_FILE open #
5 attempt to open chan 0 NO_ZERO open #
6 no permission NO_PERMS open #
7. too many files open TOO_MANY open #
B read past the end of file FEOF get#
9 read error on input FGETERR get#
10 file not open for writing

or disk full FPUTERR put#

7-56 !temp 04.90 Sculptor Reference Manual,
Screen Form Language

!temp inputbuf, ,a80

During an input command, a function key may be pressed which causes
execution of a subroutine. Changes to the current input field, however,
have not yet been stored in that field when control passes to the
subroutine. This temporary field contains the data in the current input
field at the moment the function key was pressed. It may not be altered.

!temp keyboard, ,a12

The keyboard type in use. Read from the second line of the vdu
parameter file. Most commonly used to provide keyboard independence
for help files by using the keyboard name as part of the help file name.

!temp scrline, ,i2

The current scroll line number. Set by the scroll command and cannot
be altered by direct assignment.

!temp separator, ,a1

Separator character(s) for use with get and put commands. This field
may be directly assigned. If multiple character separators are required,
the separator field may be redefined.

EXAMPLE

The following example demonstrates reading a quote delimited file. The
first and last quote must be discarded and the separator characters are
"," (quote, comma, quote).

!temp separator"aJ
separator=''', ", /* note single quotes * /
open #1, "myfile.qdf" read /* no error checking!! */
xa=inchar(l) /* throwaway quote char */

LP get #l,ta,tb,tc,td,te err=QUIT /* get the data */
xe=getstr(te,l,strlen(te)-l) /* throwaway quote */

process the data accordingly ,
goto LP

Sculptor Reference Manual
Screen Form Language

04.90 !temp 7-57

EXAMPLE NOTES

If the field te shown above was a numeric field, the last quote
character would be ignored anyway.

The get and put commands always use an end of line character
to denote the end of a record. The separator field defines the field
separators only.

!temp systime, ,i4

The system time in seconds. The base value of systime is arbitrary and
it should, therefore, only be used to calculate time differences or to seed
the random number generator.

!temp task, ,a5

The current task number. Blank if the system is not multi-tasking.

!temp time, ,m4

The current time from the system. An m4 type is used so that the time
may be formatted as hours.minutes. If calculations are required on time
values, the hour and minute portions must be separated and the
calculations performed accordingly.

EXAMPLE

hour=time/lOO : min=time%lOO
min=min+30 :!if min>S9 then hour=hour+l
if hour>24 then hour=O
newtime=(hour*lOO)+min

min=min-60

!temp tstat, ,i1

Child task termination status. The return value may be defined in a
screen form or report program with the exit command.

7-58 !temp 04.90 Sculptor Reference Manual
Screen Form Language

!temp ttyno, ,i2

The terminal number. On Unix® systems, this is a number based on the
major and minor device numbers, rather than the device name. Its
purpose is to provide a unique identifier for each terminal.

!temp user, ,a9

The user log on name. Blank on single user systems.

!temp userid, ,i2

The user identification number for this user. Zero on single user systems.

!temp vdu name, ,a12

The name of the current vdu. Read from the first line of the vdu parameter
file.

The following special temporary fields are used by the decdate and
encdate commands.

!temp day, ,i1

The day field used in encdate/decdate commands. May be directly
assigned.

!temp month, ,i1

The month field used in encdate/decdate commands. May be directly
assigned.

!temp year, ,i2

The year field used in encdate/decdate commands. May be directly
assigned.

Sculptor Reference Manual
Screen Form Language

04.90 !temp 7-59

!width Define screen width

SYNTAX

!width integer

DESCRIPTION

This optional statement defines the screen width (number of columns)
required. If no !width statement is present, a default of 80 columns is
assumed.

The only .effect of this statement is to cause sage to reconfigure the
screen to' a larger or smaller number of columns in cases where the
terminal supports such a feature. If the required width exceeds the
standard screen width, the extended screen width is set (if available).

The available widths for a vdu are defined in the vdu parameter file by
the Standard width and Extended width entries. The code sequences
to place the vdu in these widths are defined by the entries Set standard
screen width(4) and Set extended screen width(3).

EXAMPLE

!width 132

SEE ALSO

!depth

7-60 !width 04.90 Sculptor Reference Manual
Screen Form Language

Control the display of zeros on numeric fields !zeros

SYNTAX

!zeros on I off

DESCRIPTION

When a zero value numeric field is displayed using display or highlight
or when it is redrawn, the zero value is normally shown using the format
defined for the field. The !zeros declaration allows the display of zeros
to be suppressed within a screen form program.

Setting zeros on is the default and will display all zero values regardless
of the format applied. Setting zeros off will suppress display of zeros
only if the format string does not force use of zeros, ie, "#####0.00".

The compiler,cf, or the pre-processor, spp, may also be used to force
suppression of zeros using the -z switch on the command line. The
!zeros declaration will, however, over-ride this command line switch.

EXAMPLE

This short example is complete.

Program Title
!temp f1, ,m4
!temp f2, ,m4
!temp f3, ,m4,##,##0.00
+f1,Fl,10,30
+f2,F2,12,30
+f3,F3,14,30
!zeros off

display f1,f2
fl~23
display f1, f2, f3

/* will display nothing */

/* will display 23.00 in f1
and 0.00 in f3 *1

prompt
exit

Sculptor Reference Manual
Screen Form Language

04.90 !zeros 7-61

Position the cursor at

SYNTAX

at row, column

DESCRIPTION

This command positions the cursor to the specified row and column. It
may be used prier to any command which produces output that is position
definable, as shown below:

When used with the graphics commands - clearbox drawbox,
hline, and vii ne, at sets the cursor start position as required.

When used with message or prompt in a multi-statement line, it
changes the default position of the text.

When used with the put command to channel zero, at will define
the cursor position to commence the output of characters. Note
that any command which changes the cursor position will affect
put.

When used with the exec command, at causes the output from the
called program to appear at a particular place on the screen.

When used with the vdu command, at enables special use of
position specific features of the terminal.

NOTES

The default position of the option line and option prompt may be
defined by the !option declaration.

EXAMPLES

at 5,20: drawbox 8,25
at 15,30: message "Updating stock file"
at 23,2: put"Press Fl for help text"
at top-l,left+2: put account name
at 1,1 -
exec "sagerep stocklist qumel Ipr"
at 20,I:vdu 52

Sculptor Reference Manual
Screen Form Language

04.90 at 7-62

autocr Enable or disable automatic RETURN on input

SYNTAX

autocr on I off

DESCRIPTION

If autocr if off, all input into screen fields must be completed with the
RETURN or DOWN-ARROW key.

If autocr is on, typing the last character in the screen field completes the
input and the RETURN key is not required, although it can still be used
to complete input to a screen field before the last character position is
reached.

By default, autocr is off.

NOTES

If autocr is on, use of the keycode(1) function will return the code
for RETURN if a field was exited by typing the last character.

EXAMPLE

autocr on
autocr off

7-63 autocr 04.90 Sculptor Reference Manual
Screen Form Language

Enable or disable automatic gosub on input autogoi

SYNTAX

autogoi on] off

DESCRIPTION

If autogoi is off, a gosub command which follows a fieldname in an
input statement is executed only if the field is changed by the input
statement.

If autogoi is on, a gosub command which follows a fieldname in an input
statement is executed on every input to the field, whether or not its value
is changed.

In either case, the gosub command is only executed if the cursor is
moved out of the field in a forward direction. Using Backspace or
UP-ARROW to exit a field does not cause execution of the subroutine.

By default, autogoi is off.

EXAMPLE

autogoi on

SEE ALSO

input

--

Sculptor Reference Manual
Screen Form Language

04.90 autogoi 7-64

autehetp Enable or disable automatic help message on
input

SYNTAX

autohelp on I off

DESCRIPTION

If autohelp is off, the help message attached to an input field is displayed
only if the user presses the F1 key while the cursor is in the field. If
autohelp is on, the help message attached to an input field is displayed
whenever the cursor is moved into the field.

By default, autohelp is off.

NOTES

If the F1 key has been redefined in the program, it will not operate
as described above until a clearkey F1 is encountered.

EXAMPLE

autohelp on

7-65 autohelp 04.90 Sculptor Reference Manual
Screen Form Language

Send the terminal bell character bell

SYNTAX

bell

DESCRIPTION

Outputs the vdu file entry Bell character(117). This is normally set to
I\G (hex 07) which is the ASCII code for the bell character.

EXAMPLE

if s type<>5 then bell message "Invalid type"

Sculptor Reference Manual
Screen Form Language

04.90 bell 7-66

cancel Enable or disable the cancel key

SYNTAX

cancel on I off

DESCRIPTION

If cancel is on, the operator can abort any input operation and return to
the option prompt by pressing the CANCEL key (as defined in the vdu
parameter file). If cancel is off, the CANCEL key is ignored.

The default state of cancel is on. It should be turned off if a related series
of inputs and file updates is taking place which must be completed
without interruption.

NOTES

The CANCEL key is valid only during an input statement and
should not be confused with the keyboard INTERRUPT key which,
if enabled, will be recognised at any time.

If the Sent by CANCEL key(7) entry in the vdu parameter file is
blank, the CANCEL key will be ignored.

If cancel is off and interrupts are on, the user may still exit using
the interrupt key as defined in the vdu parameter file.

EXAMPLE

This example shows a series of inputs and writes to a file during which
cancel is turned off.

IL2

cancel off
interrupts off
scroll 1
input item - qty eoi=IL2
insert ordlines key=ordno,scrline
scroll: goto ILl
prompt "All items entered" no=ILl
cancel on
interrupts on

ILl

7-67 cancel 04.90 Sculptor Reference Manual
Screen Form Language

Chain a new program chain

SYNTAX

chain text expression

DESCRIPTION

Terminates sage and replaces it with a new program. The text
expression may be a string constant, an alphanumeric field or a
concatenation of several such items and specifies the program to be
called and its arguments. When the called program exits, return is direct
to the parent of the current process.

WARNING: The chain command is available only if supported by the
operating system in use and is not guaranteed to operate in an identical
way on all systems that do support it.

The chain statement does NOT call a new shell (command processor)
to process the specified command. It merely replaces the current process
in memory. A shell is required, however, if the command line involves
1/0 redirection, pipes or shell expansion. In this case the new shell or
command processor must be explicitly chained, with the command to
execute passed to it as a parameter.

NOTES

Mulptiple commands cannot form part of a chain statement.

EXAMPLE

chain "sage ordlines " + ordno
. following called with a shell as redirection required
chain "sh -c sagerep calc pvdu >/dev/tty"
chain "command le dir >dir.out"

SEE ALSO

exec, execu

Sculptor Reference Manual
Screen Form Language

04.90 chain 7-68

check Check that a record is currently selected for
update

SYNTAX

check file_id [nrs = label]

DESCRIPTION

Checks that a record has been read from the specified file and not written
back, cleared or unlocked. If a record is available, control passes to the
next statement, otherwise the error No record selected is displayed and
control passes to the option prompt. This error may be trapped by using
the nrs clause, in which case control passes immediately to the label
indicated.

NOTES

check functions on files open for reading only, except that the
record cannot be written back.

EXAMPLE

*a=Amend

Al
check cust nrs=A2
input c name - c status
prompt "Amendments correct" no=Al
write cust
clear: end
message "Please supply a customer name"
input c name
find cust display c name - c status
goto Al

A2

*d=Delete

Dl

check cust /* use the default response */
prompt "Are you sure " no=Dl
delete cust
clear
end

7-69 check 04.90 Sculptor Reference Manual
Screen Form Language

Clear all fields, specified screen fields or the
option line

clear

SYNTAX

clear [field_list I optline 1

DESCRIPTION

If a field_list is specified, clears the screen of data displayed in those
fields and re-initialises the corresponding record and temporary fields.
Alphanumeric fields are set to spaces and numeric fields to zero. The
field_list may consist of individual screen fields separated by commas,
ranges of screen fields separated by hyphens or a combination of the
two. Screen fields are those declared by program lines which commence
with +.

Fields in the scroll area are cleared only on the row indexed by the current
value of the special temp scrllne, See !scroll and scroll for further
details.

If optline is specified, clears the option line. The option line will be
redisplayed automatically the next time the user is prompted for an
option.

The clear command with no arguments clears all screen fields and all
unprotected messages, re-initialises all record buffers (except those
which have been preserved using the preserve command) and unlocks
all locked records. In this case, although their screen fields are cleared,
the data held in corresponding temporary fields is not lost. The record
buffers are initialised according to the !file record layouts, alphanumeric
fields being set to spaces and numeric fields to zero.

NOTES

Other information, such as the current position of each file and
match keys set up by the find command, is not destroyed by clear.

If a field is not declared on a screen, it may not be cleared using
clear field_list.

Sculptor Reference Manual
Screen Form Language

04.90 clear 7-70

Fields on an inactive screen may be cleared but there will be no
visible effect until the screen is switched on.

EXAMPLE

clear
clear opt line
clear 0 custno, st code-value, 0 total

SEE ALSO

preserve

7-71 clear 04.90 Sculptor Reference Manual
Screen Form Language

Clear a record buffer clearbuf

SYNTAX

clearbuf file id
"--

DESCRIPTION

The specifed file buffer is cleared and the currently selected record, if
any, is unlocked. The buffer is initialised according to the !file record
layout, alphanumeric fields being set to spaces and other fields to zero.

NOTES

This command does NOT affect the screen display until the next
display, or highlight, when the new (cleared) values of the fields
will be shown. Specifically, turning a screen on or replacing screen
contents by turning an overlaying screen off does not redisplay
data, and consequently may show data in the field when the buffer
is actually empty.

Commonly used when inserting to ensure that a file buffer is empty
at the start of processing each record.

EXAMPLE

clearbuf stk

SEE ALSO

clear

Sculptor Reference Manual
Screen Form Language

04.90 clearbuf 7-72

clearbox Clear a rectangle on the screen

. SYNTAX

clearbox depth, width

DESCRIPTION

Clears a rectangle on the screen which is depth rows deep and width
columns across starting at the current cursor position. The at command
may first be used to position the cursor.

This command is typically used to clear the area inside a box which has
been drawn using the drawbox command. It may also be used to clear
the entire box including its graphic border, or any other area of the
screen.

EXAMPLE

at 5,10 : drawbox 10,30
at 8,11 : put "This text is inside the box"
at 10,12 ;: prompt "Okay to clear text"
at 6,11 : c1earbox 8,28
at 10,12 : prompt "Okay to clear box"
at 5,10 : clearbox 10,30

SEE ALSO

drawbox

7-73 clearbox 04.90 Sculptor Reference Manual
Screen Form Language

Disable programmed function keys clearkey

SYNTAX

clearkey key-id [, key-id 1 ...

DESCRIPTION

Disables function keys or special keys which have been programmed
using the on command. key-id may be any of F1 through F32, TAB,
BACKTAB, DEL_LINE, INS_LINE, SCRl_UP, SCRl_DN, PG_UP or
PG ON.

If F1 is disabled it reverts to its default use as the HELP key.

NOTES

It is proper practice to disable a function or special key when
processing statements called by that key. If the key is left active
and there is an input statement in the routine, there is a danger
of recursion. If this happens more than a few times, the program
will abort with the error "Input statements nested too deeply".

When an on local {key is enabled and an end statement is
encountered, the defined {key is automatically cleared.

EXAMPLE

clearkey F2, F3, PG UP

Sculptor Reference Manual
Screen Form Language

04.90 clearkey 7-74

close Close a keyed file

SYNTAX

close file id

DESCRIPTION

Closes the specified keyed file and unlocks the current record. The
content of the file's record buffer remains unaltered.

If the file is later reopened, the file position is unchanged but any selected
record has been unlocked, so a write will not be permitted unless a
record is first read.

NOTES

The clear command still operates on a closed file's record buffer
but this may be prevented by using the preserve command.

An attempt to close a file which is already closed is ignored.

EXAMPLE

close control

7-75 close 04.90 Sculptor Reference Manual
Screen Form Language

Close a sequential file close #

SYNTAX

close # channel

DESCRIPTION

Closes the sequential file which was opened on channel using the
open # command.

channel is a number in the range 1-32 which corresponds to the channel
number used when the file was opened. It may be a constant, field name
or expression.

NOTES

Channel 0 (zero) is the standard 1/0 channel and cannot be closed.

It is not an error to close a channel which is already closed. In this
case the command is simply ignored.

The number of files which may be concurrently opened is
governed by the operating system, but is usually not less than 16.

EXAMPLE

close #1
close #barcode

SEE ALSO

!handles,close, open #

Sculptor Reference Manual
Screen Form Language

04.90 close # 7-76

decdate Decode a date field to day, month and year parts

SYNTAX

decdate expression

DESCRIPTION

Decodes a date field into day, month and year components. The
expression must yield a valid day number in the range ° to 3,652,059
and will normally be a simple date field, but may be any integer
expression.

The decoded values are placed in the predefined special temporary fields
day, month and year.

EXAMPLE

This example demonstrates taking a date and producing a string like
"Sun Oct 15 1989" from it. This example is complete and, as it stands,
also provides the day and month components separately.
Test of Month/Day of Week
!temp monthtext, ,a36
!temp day text, ,a21
!temp tdate,Test Date,d4
!temp final, ,a15
!temp dow,Day of week,a3
!temp mon,Month,a3
!temp dt,Day text,a2,+OO
!temp yt,Year text,a4
+tdate"lO,35

monthtext="JanFebMarAprMayJunJulAugSepOctNovDec"
daytext="SunMonTueWedThuFriSat"

INP input tdate bs=QUIT : decdate tdate /* get parts */
dow=getstr (daytext, (((tdate%7) +1) *3) -2,3) /* day */
mon=getstr (monthtext, (month*3) -2,3) /* month */
dt=day : yt=year
final=dow+" "+mon+" "+dt+" "+yt /* build string */
message "Result: " : put final;
goto INP

QUIT exit

7-77 decdate 04.90 Sculptor Reference Manual
Screen Form Language

Delete a record delete

SYNTAX

delete file_id [nrs = label]

DESCRIPTION

Deletes the currently selected record from the specified file. If no record
is currently selected, then the error No record selected is displayed and
control passes to the option prompt. This error may be trapped by using
the nrs trap, in which case control passes to the label indicated.

NOTES

Deleted records do not return space on the file back to the
operating system, rather the space is marked for re-use on
subsequent insertions.

A kfcopy operation may be performed to return space to the
operating system if there has been a substantial and permanent
reduction in the number of records.

The number of deleted records on a file may be determined using
the kfcheck utility with the -d switch.

Deletion is permanent and is carried out immediately. There is no
way to recover a deleted record.

EXAMPLE

*d=Delete

d LOOP

prompt "DELETE THIS RECORD: Are you sure" no=d END
/* DELETE RELEVANT TRANSACTIONS FIRST */
find trans key=st code nsr=d NOTRAN
delete trans : match trans nsr=d NOTRAN
goto d_LOOP

d NOTRAN delete stk
clear

d END end

Sculptor Reference Manual
Screen Form Language

04.90 delete 7-78

display Display field data from a predefined screen field

SYNTAX

display tietd tist I optline

DESCRIPTION

Displays the current values of the specified screen fields. The field list
may consist of individual field names separated by commas, ranges of
field names separated by hyphens, or a combination of the two. Screen
fields are those declared by program lines which commence with a plus
sign n+". The display takes place in the order specified in the field list.

Using the keyword optline in place of a field list will display the option
line. The option line is always redisplayed when an option ends.

NOTES

If a field's contents have been changed by assignment, the field
should be displayed prior to being input to ensure that the user is
being shown the current data.

Fields from an inactive screen may be displayed, but will not be
shown until the screen is turned on (see the screen command).

The vdu sequences Start Normal Data (32) and End Normal
Data (33) are issued prior to and after the data is displayed.

EXAMPLE

*f=Find
clear s code
input s code bs=Fl
read stock
display s code - s rol
end

7-79 display 04.90 Sculptor Reference Manual
Screen Form Language

Draw a rectangle on the screen using line
graphics

drawbox

SYNTAX

drawbox depth, width

DESCRIPTION

Draws a rectangle on the screen which is depth rows deep and width
columns across starting at the current cursor position. The cursor
position is left unchanged.

depth and width may be constants, field names or expressions.

The rectangle is drawn using the line graphics characters which are
defined in the vdu parameter file. The area inside the box is not cleared.
To clear it, use the clearbox command.

The clearbox command may also be used to erase the entire box
including its graphics border. A global clear command will not erase the
border on vdu's which support protected graphics characters.

NOTES

A drawbox is not associated with any screen overlay so will not be
removed when a screen is turned off or redrawn when a screen is
turned on. The redraw command will not redisplay boxes drawn
with the drawbox command.

If the drawbox is 'associated with a screen (using the !at row, col
: drawbox depth, width mechanism), the box will be cleared when
drawn and will be redrawn with the redraw command, but depth
and width may only be integer constants.

The at command may be used to position the cursor prior to
issuing a drawbox command.

A title may be defined for a box which is associated with a screen
using the !at declaration. See !at for syntax details.

Sculptor Reference Manual
Screen Form Language

04.90 drawbox 7-80

EXAMPLE

at 5,10 : drawbox 10,30
at boxrow-1,boxco1-1 : drawbox boxdepth+2,boxwidth+2
at boxrow,boxco1 : c1earbox boxdepth,boxwidth

7-81 drawbox 04.90 Sculptor Reference Manual
Screen Form Language

Set the mode for infield editing editmode

SYNTAX

editmode modeval

DESCRIPTION

Sets the edit mode for a subsequent input command. The default edit
mode is zero. modeval is a binary code with its bits interpreted as follows:

Bit 0

Suppress the clearing of fields on first keypress. If this bit is not set,
the contents of a field are erased on the first keypress unless that key
is an edit key or a cursor movement key.

Bit 1

Select insert or overtype mode. If this bit is not set, field editing starts
in insert mode. If this bit is set, field editing starts in overtype mode.

Bit 2

Suppress the <INS> (insert) and <OVT> (overtype) messages. If this
bit is not set, either <INS> or <OVT> is displayed in the bottom right
hand corner of the screen whenever editing is in progress.

Bits Value Mode
000 0 alphas cleared, insert, messages on
001 alphas not cleared, insert, messages on
01 0 2 alphas cleared, overtype, messages on
o 1 1 3 alphas not cleared, overtype, messages on
1 00 4 alphas cleared, insert, messages off
1 0 1 5 alphas not cleared, insert, messages off
1 1 0 6 alphas cleared, overtype, messages off
111 7 alphas not cleared, overtype, messages off

EXAMPLE

editmode 3
editmode SYS EDITMODE

Sculptor Reference Manual
Screen Form Language

04.90 editmode 7-82

encdate Encode a date from the temps day, month and
year

SYNTAX

encdate date_field

DESCRIPTION

Encodes the current values in the special temps day, month and year
into a day number and stores the result in the designated date field. The
temps day, month and year are predefined and need not be declared
(see !temp).

NOTES

If the date to be encoded is not valid, the date_field is set to zero.

EXAMPLE

encoding the last day of the current year
decdate date
day = 31: month = 12
encdate eoy

7-83 encdate 04.90 Sculptor Reference Manual
Screen Form Language

End the current option end

SYNTAX

end

DESCRIPTION

Terminates statement execution and passes control back to the option
prompt. It is permissible for statement execution to fall through an option
title line into the logic for the following option. Therefore, care should be
taken to include an end statement at the conclusion of each option,
unless such continuation is intended.

NOTES

If the program contains no options, an end will cause termination
of the program.

The internal subroutine stack is cleared by an end statement, so
that any pending subroutine returns are properly cleared.

An end statement is not required before the first option in a
program if that program contains no initialisation statements.

EXAMPLE

Example of end

!file stk
+s code,,10,20
+s=rol,,11,20

*n=Next
next stk
display s code - s rol
end

*a=Amend
etc ...

Sculptor Reference Manual
Screen Form Language

04.90 end 7-84

error Display an error message

SYNTAX

error text expression

DESCRIPTION

Displays an error message in the bottom, left-hand corner of the screen.
The text expression may be a string constant, an alphanumeric field or
a concatenation of several such items using the + and / operators. If the
value of a numeric field is required in an error message, it mustfirst be
assigned to an alphanumeric field.

The text is displayed bracketed by the Start error message(27) and End
error message(28) sequences in the vdu parameter file, and is erased
as soon as fresh input is received, another message is displayed or a
clear command with no field list is given.

Certain error conditions, unless trapped, automatically display an error
message and return control to the option prompt.

EXAMPLE

error "Sale price must exceed cost price!"
atemp = max disc
error "Maximum discount is " + atemp + "%"

7-85 error 04.90 Sculptor Reference Manual
Screen Form Language

Execute a child task exec,execu

SYNTAX

exec[u] text expression

DESCRIPTION

Executes the text expression as a system command line. The expression
may be a string constant, an alphanumeric field or a concatenation of
several such items using the + and / operators. When the child task
completes, control is returned to the statement following the exec. The
special temporary field tstat contains the child tasks' termination code.

Before executing the command, exec issues the Ignore protection and
Enable Scroll(20) and the Reconfigure VDU(12) sequences defined in
the vdu parameter file. On regaining control, it issues the Configure
VDU(11) and the Honour Protection and Disable Scroll(19)
sequences. If there is a possibility that the screen form will be damaged
by the program being executed, the newform or redraw command
should be used to redisplay it. No vdu sequences are issued by the
execu (execute unseen) command.

WARNING: The exec command is available only if supported by the
operating system in use and is not guaranteed to operate in an identical
way on all systems that do support it.

The exec statement normally calls a new shell (command processor) to
process the specified command. However, if the command is a simple
program call (with or without arguments), then a shell is not required.
This can be indicated to Sculptor by preceding the command with a - as
in the example below. A shell is required if the command involves I/O
redirection, pipes, shell expansion or multiple commands.

NOTES

When constructing command line parameters, please ensure that
quotes are used to surround parameters that may contain spaces,
otherwise these spaces will be taken as parameter delimiters (see
example below).

Sculptor Reference Manual
Screen Form Language

04.90 exec, execu 7-86

If exec is used to call the Sculptor program newkf in order to
re-initialise files used in the program, these files should be closed
before the exec and re-opened afterwards. Failing to do so can
cause file corruption on some operating systems.

EXAMPLE

exec "kfcheck *.k"
exec "sagerep printinv " + ptr + "I" + spooler
exec "-/bin/sage stock" /* shell not used */
In the example below care is taken to ensure that the date passed on the
command line is quote delimited as the date itself may contain spaces.
!temp txt,Text of date,d4,d+"dd/mm/yy"

txt=date
exec "-sagerep putdate pvdu "+''''+txt+'"'
if tstat<>O then message "PUTDATE FAILED" : \

prompt : exit
Dates are, however, best passed as day numbers as follows:
!temp dayno"i4
!temp txt"a7

dayno=date
txt=dayno
exec "sagerep putdate pvdu "+txt

7-87 exec, execu 04.90 Sculptor Reference Manual
Screen Form Language

Terminate the program immediately exit

SYNTAX

exit [numeric_expression 1

DESCRIPTION

Terminates the program and returns control to the parent task. The
optional numeric_expression may be used to pass back a termination
code (the default is zero on most systems and one on VMS).

NOTES

The termination code of a child process is contained in the tstat
special temp.

If a shell (or command processor) has been used to execute a
program, that shell may not pass back its child process termination
status.

If a non-zero termination code is returned to menu, the code will
be displayed and a keypress will be required to return to the menu.

EXAMPLE

*e=Exit

EX ERR

prompt "Were the shown values correct " no=EX ERR
exit
exit 9

Sculptor Reference Manual
Screen Form Language

04.90 exit 7-88

find Find and read a record by full or partial key value

SYNTAX

find file_id [key = field_list] [nsr = label] [riu = label]

DESCRIPTION

Unlocks any existing locked record on the file then searches for the first
record on the file whose key matches the supplied key. If no matching
key is found, the error No such record is displayed and control passes
to the option prompt. This error may be trapped by using the nsr trap, in
which case control passes to the label indicated.

If the located record is currently locked by another user, the message
Waiting ... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu trap, in which
case control passes to the label indicated. On most systems, the record
in use status can only occur if the file is open in update mode.

If the key= clause is omitted, the key data in the file's record buffer is
used as the key. If the key= clause is present, a key is constructed using
data from the named fields.

The find command differs from read by not requiring an exact key. The
rules are:

If the natural key field is alphanumeric, then trailing spaces in the
supplied data are ignored and only the leading characters must
match the corresponding characters in that key field, e.g. if "Smith"
is supplied then "Smithson" will match but "Smythe" will not.

If the natural key field is numeric (including dates) and the supplied
data is non-zero, then that key field must match exactly.

If the natural key field is numeric (including dates) and the supplied
data is zero, then any value in that key field matches.

NOTES

A key= clause cannot be used to specify values for secondary key
fields only.

7-89 find 04.90 Sculptor Reference Manual
Screen Form Language

EXAMPLE

*f=Find
clear
input surname,firstname,dob /* this is key order */
find addr nsr=f NOADDR riu=f INUSE

In the above example, surname and firstname are alphanumeric and dab
is a date field (date of birth).

If the user inputs part of the surname, part of the firstname and no dab,
then the first record which matches the supplied parts of both surname
and firstname is read, regardless of dab.

If the user inputs firstname and dab but no surname, then the first record
which matches the supplied part of firstname and has the required dab
is read, regardless of surname, but in this case the search may be slower,
since surname is the most significant part of the key and many surnames
may have to be checked until a match is found.

Data file structure
df keyl, ,alO
df-key2, ,i2
df-key3, ,i4
df=data, ,a30
To find based on df key3

df keyl=""
df-key2=O
df-key3=123 /* value to find */
find DF nsr=fd NOT ON FILE riu=fd IN USE
display df keyl-df=data

If a secondary key find is performed, as above, Sculptor has to search
the index file from its start until a matching key is found. The retrieval
time will depend on the size of the key and the number of keys checked
but will be considerably faster than a record by record, sequential search.

Sculptor Reference Manual
Screen Form Language

04.90 find 7-90

get # Read data from a sequential file

SYNTAX

get [# channel,] fieldname [, fieldname] ... [err = label]

DESCRIPTION

Reads data from the sequential file which is open on channel into the
specified fields. If channel is 0 (zero) or omitted, data is read from the
standard input.

Each get command reads in one record terminated by the system
end-of-line character(s). A record consists of data items, each terminated
by either a valid separator or end of line. The entire record must be ASCII
text.

The valid separator is defined in the special temp separator. By default,
separator is an a1 field and has the value"," but it may be redefined to
hold multiple characters, all of which then define the field separator.

The data items read are assigned to the corresponding fields in order. If
there are more fields than data items read, the extra fields are given a
null value. If there are more data items than fields, the extra data items
are ignored.

NOTES

The fields may be of any type. The input data is converted as
required (see page 7-7 for further details).

The separator and the end of line characters are not stored in the
fields.

If a field has the n (null terminated) format defined, the field is
stored as read. It is not padded with spaces to the field width, so
the field length is preserved.

7-91 get # 04.90 Sculptor Reference Manual
Screen Form Language

Input from the keyboard is a special case. Characters are read
until a RETURN character is typed and the entire line is stored in
the first field. Separator characters are treated as ordinary
characters and it is not possible to enter more characters than the
width of the field. If more than one field is specified, the extra fields
are ignored. If the optional err trap is present and an error occurs,
the system error number is stored in the special temp errno and
control passes to the specified label. If an error occurs and there
is no err trap, an error message is displayed and the program
aborts.

See !temp errno for a complete list of error codes returned.

EXAMPLE

This example demonstrates reading a text file into a Sculptor keyed file.
Each record in the text file has this structure:

Surname, Forename, Group
entryl, entry2, ... (minimum 1, maximum 5)

Key:
The Sculptor keyed file has this structure:

Data:

vf surname,Surname,a30
vf-dup,Duplicate key check,i2
vf-group,Group,a12
vf-forename,Forename,a30
vf-ent,Entries,i4(5)

The vf dup field is required to handle potential duplicate key values
read in from the text file. The program to read this file follows:

Read In VF File
!file VF vf store
!include <errors.h>
!temp ctr"i2

interrupts on : on INTERRUPT gosub QUIT
open #3,"VF INPUT.DAT" read err=OPENERR
get #3,vf s~rname,vf forename,vf grou~ err=READERR
get #3, vf ent[1],vf-ent[2],vf ent[3], \

vf ent[4],vf ent[5] err~READERR
vf dup=-I-
vf-dup=vf dup+l : insert VF re=TRYINSERT
clearbuf VF
goto LOOP
at 23,1 : put "Error ";errno;" opening file"
sleep 3 : exit
if errno=FEOF then exit

LOOP

TRY INSERT

OPENERR

READ ERR

QUIT

RET

at 23,1 : put "Error ";errno; reading file"
sleep 3 : exit
prompt "INTERRUPT : do you wish to quit " no=RET
exit
return

04.90 get # 7-92Sculptor Reference Manual
screen FormLanguage

gosub CaU a subroutine

SYNTAX

gosub label

DESCRIPTION

Transfers control to a subroutine at the label indicated. When a return
statement is encountered, control is returned to the statement following
the gosub command.

Subroutines may be nested to a maximum limit of 90 levels deep. Each
subroutine must always be exited eventually using a return statement.
Repeated use of goto commands to exit a subroutine will either cause
a stack overflow error or a "too many nested gosubs" error.

NOTES

An end command will clear the internal subroutine stack.

Subroutines may call themselves (recurse) but it should be
remembered that all variables within the subroutine are global and
are not local to that recursion.

EXAMPLE

*f=Find

Fl

clear
input item bs=Fl
find item
gosub OISP
end

*n=Next
clear
next stk
gosub'OISP end

OISP
display item - rol
if stklev < rol then error "Below re-order level"
return

7-93 gosub 04.90 Sculptor ReferenceManual
Screen Form Language

Transfer control to another line golo

SYNTAX

goto label

DESCRIPTION

Transfers control to the statement at the line indicated. It is permissible
to jump from the code in one option to the code in another but it is not
advisable to jump into or out of subroutines. The compiler will not
complain but your program is unlikely to work as intended.

NOTES

The pre-processor, spp, uses the special line labels XXnn and
YYnn_nn where n may be any digit, so it is recommended that
you do not use these labels in your programs.

EXAMPLE

*f=Find
clear
input item
find stk
goto DISP

*n=Next
clear
next stk

DISP display item - rol
end

Sculptor Reference Manual
Screen Form Language

04.90 goto 7-94

hangup Enable or disable hangup interrupt

SYNTAX

hang up on I off

DESCRIPTION

If hangup is off, hangup interrupts are ignored.

If hangup is on and sage receives a hangup interrupt, it completes any
file access being processed and then terminates. This is the default
state.

The operating system usually sends a hang up interrupt to indicate that
a modem connection has failed or, in the case of a multi-user system,
that the system is about to close down.

NOTES

On Unix systems, switching the terminal off or temporarily
removing the serial cable may cause a hangup interrupt. To
prevent this, see the clocal option of the Unix command stty.

EXAMPLE

hangup off

7-95 hangup 04.90 Sculptor Reference Manual
Screen Form Language

Highlight specific screen fields highlight

SYNTAX

highlight field_list

DESCRIPTION

Positions the cursor at the first character position in each screen field
specified in the field list and sends the Start Highlight data (36)
sequence defined in the vdu parameter file. The data is then displayed
and the sequence defined as End Highlight Data (37) is sent. The
command may be used to highlight specific data values on the screen.

This command will only work if the vdu terminal is capable of supporting
it. Some terminals do not have the ability to highlight areas of the screen.
On terminals which use embedded attributes, the use of highlight may
cause the data to be shifted by one character.

NOTES

The highlight command is similar to the display command, but
uses the entries Start highlight data (36) and End highlight data
(37) from the vdu parameter file to display the data.

EXAMPLE

highlight st_stklev,st_rol

Sculptor Reference Manual
Screen Form Language

04.90 highlight 7-96

hline Draw a horizontal line

SYNTAX

hline ten, style

DESCRIPTION

Draws a horizontal line at the current cursor position of length len
characters using the graphics characters defined in the vdu parameter
file. style is a parameter in the range 0-16 which defines the style of the
line as follows.

o Draw a blank line using spaces. Often used to remove an
existing line.

1-12 Draw a thin line with start and end characters according to
the following table. If the start and end characters do
not match this table, check that the graphics characters
are correctly defined in the vdu parameter file.

1 7

2 8

3 9

4 10

5 11

6 12

13 Draw a line using block graphics character 1 in the vdu file.
14 Draw a line using block graphics character 2 in the vdu file.
15 Draw a line using block graphics character 3 in the vdu file.
16 Draw a line using block graphics character 4 in the vdu file.

EXAMPLE

at 12,20 : h1ine 30,4

7·97 hline 04.90 Sculptor Reference Manual
Screen Form Language

Conditionally execute a statement if

SYNTAX

if expression then statement [else statement]

DESCRIPTION

The statement which follows then is executed only if expression is true.
If the optional else clause is included, the statement which follows else
is executed only if expression is false. Both the statement which follows
then and the statement which follows else may be multiple statements
separated by colons.

The statement which follows else may be another if statement with an
optional else clause, and so on.

The statement which follows then may also be another if statement with
an optional else clause, but in this case, the first if statement cannot
have an else clause.

The expression may include all supported arithmetic, relational and
logical operators. Parentheses may be used to force a particular order
of evaluation. An arithmetic statement which evaluates non-zero is true
and one which evaluates to zero is false.

The folowing relational and logical operators are available:
equal to

< less than
<= less than or equal to
> greater than
>= greater than or equal to
<> not equal to
bw begins with (alpha only)
et contains (alpha only)
and logical and
or logical or

Sculptor Reference Manual
Screen Form Language

04.90 if 7-98

EXAMPLE

if eostpr<~salepr then error "Sale price must exceed cost"

if d date > date and (cat
status = 1 : goto D50

"A" or cat = "B") then \

if options ct "A" then \
gosub OPTA : display flda \

else if options et "B" then \
gosub OPTB : display fldb \

else \
clear flda, fldb

7-99 if 04.90 . Sculptor Reference Manual
Screen Form Language

Input data into screen fields input

SYNTAX

input field_list [bs=labe/j [eoi=labe/j [ni=/abe/]

DESCRIPTION

Positions the cursor to each field in the field_list in turn and accepts input
from the user. If the input is valid, the data is assigned to the
corresponding record or temporary field. If the input is not valid, the bell
is sounded and re-input is awaited. The fjeld_listmay consist of individual
screen fields separated by commas, ranges of screen fields separated
by hyphens or a combination of the two. Screen fields are those declared
by program lines which commence with a plus sign "+".

Input proceeds in the order specified in the field_list. A range of fields
fieldm-fieldn indicates all screen fields declared in the program between
fieldm and fieldn inclusive. The input command may only reference fields
on active screens. Any attempt to input to a field on an inactive screen
causes the error Attempt to access an inactive screen to be displayed
and control passes to the option prompt.

Input into fields in the scroll area takes place on the row indexed by the
current value of the special temp scrline. See lscroll and scroll for
further details.

Input data is validated firstly according to the data type of the field and
secondly against any validation list associated with the field. Date fields
are fully checked for date validity.

There is an option to attach a subroutine to an individual field in the
field_list. This is done be appending a gosub clause to the field name,
as in the following example:

input fieldl gosub CHECK FIELDl, \
field2-field5, \ -
field6 gosub CHECK FIELD6, \
field7 -

Note that the subroutine cannot be attached to a range of fields, only to
individual fields.

Sculptor Reference Manual
Screen Form Language

04.90 input 7-100

By default, a field subroutine is called only if the input changes the
content of the field. The autogoi command may be used to force a field
subroutine to be called whether or not the field content changes. (See
autogoi for details.) Automatic validation is performed before the field
subroutine is called.

On return from a field subroutine, input proceeds with the next field in
the list unless either an inputerr command or a skip command was
called within the subroutine. An inputerr command informs Sculptor that
the input data is not valid and must be re-input. A skip command instructs
Sculptor to move to another field in the input list. It is possible to skip
forwards or backwards. See inputerr and skip for details.

A field subroutine may be used to further validate the input data or for
some other purpose such as reading and displaying the description of a
code. It is also possible to execute another input command within a field
subroutine. A maximum of seven input commands may be nested at any
one time. In such nests, inputerr and skip commands only affect the
active input command.

The ni=label clause specifies a label to which control is transferred if no
fields are changed by the input command and if, prior to the input
command, a display command was used to display data in each field.
The nl trap will not occur if no display command has followed the last
clear command.

Various editing keys are available during input. In this manual, the full
name of these keys is used. The actual key assigned to each task is
defined in the vdu parameter file in use.

BACKSPACE
Deletes the character to the left of the cursor and moves all characters
to the right of the cursor one position left. If the backspace key is used
at the beginning of a field, any previous content of the field is redisplayed
and input reverts to the preceeding field in the input list. If the backspace
key is used at the beginning of the first input field and a bs=label
clause is present, control passes to the line indicated, otherwise the bell
is sounded and the cursor does not move.

7-101 input 04.90 Sculptor Reference Manual
Screen Form Language

DELETE CHARACTER

Deletes the character under the cursor and moves all characters right of
the cursor one position left. On the PC keyboard this is normally the DEL
key.

DELETE TO END OF FIELD

Erases from the current cursor position to the end of the field. This key
is normally AZ.

RETURN

The RETURN key is used to terminate the input in each field. The data
in the field will be validated unless a display command was previously
used to display data in the field and no attempt has been made to change
the data. If autocr is on, the effect of typing the last character in a field
is the same as pressing the RETURN key. (See autocr for details.)

END OF INPUT (EOI)

The EOI key has the same effect as the RETURN key unless the
eoi=/abe/ clause is present, in which case control passes to the line
indicated. When this clause is present, the EOI key will not function if the
data in the field has been changed. This ensures that the data is properly
validated. On the PC keyboard this is normally the ESC key.

CANCEL

If cancel is on (see cancel) and the user presses the CANCEL key, an
automatic clear command is executed and control passes to the option
prompt. If cancel is off, the CANCEL key has no effect. This key is
normally AX.

TOGGLE INSERT/OVERTVPE MODE

Pressing this key switches the editing mode between insert mode and
overtype mode. When a character is typed in insert mode, existing
characters which are under and right of the cursor are pushed right. If a
character is pushed past the end of the field it is lost. When a character
is typed in overwrite mode, it overwrites the existing character under the
cursor. The current mode is shown by the INS/OVT indicator in the
bottom right corner of the screen. The editmode command may be used
to turn this off. On the PC keyboard, this is normally the INS key.

Sculptor Reference Manual
Screen Form Language

04.90 input 7-102

UP ARROW

The UP ARROW key moves the cursor to the previous field in the input
list and, if the field is not numeric, maintains the position of the cursor
relative to the start of the field.

DOWN ARROW

The DOWN ARROW key moves the cursor to the next field in the input
list and, if the field is not numeric, maintains the position of the cursor
relative to the start of the field. Validation and field subroutine calls are
performed as with the RETURN key.

LEFT ARROW

Moves the cursor one character position left without erasing a character.
If used at the beginning of a field, moves the cursor to the previous field
in the input list.

RIGHT ARROW

Moves the cursor one character position right without erasing a
character. The cursor cannot be moved out of the field.

NOTES

If a skip command is used prior to using input, the skip will take
effect immediately the next input command is executed.

If, during input, a function key is used to call a subroutine, the
content of the current input field will not have been stored but the
current input data may be found in the special temp inputbuf. This
data may be examined but not changed.

When a subroutine is executed from a function key during input,
the current scroll line number is automatically saved and is
restored when the subroutine returns.

Use of the Left-Arrow or Up-Arrow key to exit an input field will
cause the BS trap to be executed if the field is the first in the
field-list. Use of the Backspace key to exit the first field will always
result in the previous field contents being shown in the field. Use
of the Left-Arrow or Up-Arrow key however, may result in a BS trap
with changed field contents. Please bear this in mind when
processing the BS trap.

7-103 input 04.90 Sculptor Reference Manual
Screen Form Language

Turning a screen off within a subroutine when fields which appear
on that screen are being input will give the error "Attempt to access
inactive screen" when the subroutine returns. Control will then
return to the option prompt.

EXAMPLE

input st code, st desc-st costpr, \
st-eoq-st rol bs=INIO eoi=IN90

display st stklev
input st stklev ni=NO_CHANGE
input name-addr, cy code gosub DISPLAY COUNTRY
The following example shows an input routine which makes use of scroll
areas and subroutine validation. This example assumes the files
referenced exist, but is otherwise complete.

Example INPUT program

input.f

!file CUST customer
!file CAT category
!scroll 13,5
!temp ctr, ,i2
!option block
+cust key,,8,20
+cust-name,,10,20
+cust-address, ,13,20
+cust-cat,,20,20
+cat ~ame,,20,35

end

/* customer details */
/* category descriptions */
/* for customer address */
/* general counter */
/* pick & point option line */

/* cust address is an a30(5) */

/* name lookup from cat file */

*i=Insert { Insert a record onto the customer file }
clear : autogoi on
input cust key bs=KWIT eoi=KWIT
testkey CUST nsr=i NAME : goto i GETKEY
input cust name bs;;i GETKEY eoi=KI'JIT
for(ctr=l; ctr<=dim(cust address); ctr=ctr+1

scroll ctr
input cust address bs=i LOOPUP eoi=KWIT
continue -
ctr=ctr-1 : if ctr=O then goto i NAME
goto i LOOP

i GETKEY

i NAME

i LOOP

i LOOPUP

KWIT

}
input cust cat \.

gosub CHECK CAT \
eoi=KWIT bs;;i LOOPUP

prompt "Is this record correct "no=i GETKEY
write CUST
au~ogoi off : clear : end

Sculptor Reference Manual
Screen Form Language

04.90 input 7-104

CEECK CAT
cc RET
cc-NOCAT

*e~Exit

read CAT key~cust cat nsr~cc NOCAT
display cat name : return -
cat name~"NOT FOUND" : input err : goto cc RET

{ Exit this program }
exit

7-105 input 04.90 Sculptor Reference Manual
Screen Form Language

Insert a new record insert

SYNTAX

insert file_id [key = field_list] [re = label]

DESCRIPTION

Inserts a new record on the specified file. The index is immediately
reorganised so that the record appears in its correct location in the file.
The key must be unique. If a record having the supplied key already
exists, then the error Record exists is displayed and control passes to
the option prompt. This condition may be trapped by using the re trap,
in which case control passes to the line indicated.

Normally, the key= clause is omitted and the data in the file's natural key
fields is used as the key. If the key= clause is present, a key is
constructed using data from the named fields and the natural key fields
are updated accordingly.

NOTES

Use of the insert command in a program will cause the keyed file
to be opened in update mode.

If the file is not currently open, an operating system error will occur.

If these is insufficient space on the disk for the new record and its
index entry, an operating system error will occur and the file may
become damaged (see the kfcheck and kfri utilities in chapter
10) .

EXAMPLE

*i=Insert

11

input c name - c status
insert cust re=Il
message "New customer recorded"
end
error "Customer already on file"
end

Sculptor Reference Manual
Screen Form Language

04.90 insert 7-106

interrupts Enable or disable interrupts

SYNTAX

interrupts on I off

DESCRIPTION

If interrupts are on and sage receives a standard keyboard interrupt, it
will abort the program. If interrupts are off, keyboard interrupts are
ignored.

Whatever state is set with this command, sage does not respond to
interrupts while it is updating a disk file. This prevents the index from
becoming damaged.

The default state for interrupts is on if there are no file update commands
in a program and off if there are file update commands.

EXAMPLE

interrupts on

7-107 interrupts 04.90 Sculptor Reference Manual
Screen Form Language

Indicate an input error inputerr

SYNTAX

inputerr

DESCRIPTION

The inputerr command is meaningful only when executed in a
subroutine called by a gosub command in an input statement. At all
other times an inputerr command is ignored.

Executing inputerr indicates that the data in the current input field is not
valid. When the validation subroutine returns to the input statement, the
cursor will not move forward out of the current input field until a new value
has been entered which does not cause the validation subroutine to
execute an inputerr command.

EXAMPLE

input stkcode gosub CHECK_STKCODE, stkdesc

CHECK STKCODE
testkey stock nsr=BAD STKCODE
return

BAD STCKCODE
error "No such stock code"
inputerr
return

Sculptor Reference Manual
Screen Form Language

04.90 inputerr .7-108

let Assign a value to a field

SYNTAX

[let] field_name = expression

DESCRIPTION

The expression is evaluated and the result stored in the designated field.
If the type of the result does not match the type of field then an
appropriate conversion takes place (see page 7-7). The expression may
include all supported arithmetic, relational and logical operators and all
functions. Parentheses may be used to force a particular order of
evaluation. A relational or logical expression, or part expression yields
zero if false and non-zero if true.

The word let is optional and is normally omitted.

EXAMPLE

let fullname = firstname / " " + surname
total = qty * price * (1 + vatrate)
roflag = stklev < rol

7-109 let 04.90 Sculptor Reference Manual
Screen Form Language

Place a read lock on a file lock

SYNTAX

- lock file_id [riu=labe~

DESCRIPTION

Any existing record on the file which is locked by this program is first
unlocked. The command then attempts to place a read lock on the entire
file. If the lock succeeds, execution continues with the next statement.

If any record on the file is currently locked by another process, the error
Record in use is displayed and control passes to the option prompt. This
error may be trapped by using the riu=label clause, in which case control
passes to the line indicated.

A file lock prevents the file from being updated by any program until the
file is unlocked using the unlock command, closed using the close
command or the program exits.

NOTES

Index-only files cannot be locked.

On systems which permit it, several programs may have the same
file read locked at the same time.

If a program which holds a file lock inserts or deletes a record on
the file, the read lock is released. If another program holds a file
lock, the insert or delete will wait until the file is unlocked.

If a program which holds a file lock attempts to write a record back
to the file, the result is undefined. On some systems the write will
succeed, on others the error No record selected will occur.

On VMS, the lock command is ignored.

EXAMPLE

lock transfile riu=BUSY

Sculptor Reference Manual
Screen Form Language

04.90 lock 7-110

match Find and read the next matching record

SYNTAX

match file_id [nsr = label] [riu = label]

DESCRIPTION

Unlocks any existing locked record on the file then reads the next record
whose key matches the key supplied to the previous find command on
the indicated file. The match command starts its search at the current
file position. Refer to find for full details of key matching.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr trap, in which case control passes to the line indicated. An
unsuccessful match leaves the record buffer unaltered.

If the located record is currently locked by another user, the message
Waiting ... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu trap, in which
case control passes to the line indicated. On most systems, the record
in use status can only occur if the file is open in update mode.

NOTES

A match operates on the key supplied to the last find command
on the relevant file.

If a find command on the file has not previously been performed,
match will not find a record.

EXAMPLE

match cust nsr=DONE
match stock

7-111 match 04.90 Sculptor Reference Manual
Screen Form Language

Display a message message

SYNTAX

message text expression

DESCRIPTION

Displays a message in the bottom, left-hand corner of the screen. The
text expression may be a string constant, an alphanumeric field or a
concatenation of several such items using the + and / operators. If the
value of a numeric field is required in a message, it must first be assigned
to an alphanumeric field.

If message is preceded by an at command in a multiple statement, the
message is displayed at the current cursor position instead of the bottom
left hand corner of the screen. A message on the message line remains
displayed until another message or error message is issued or a clear
command with no field list is executed. If autohelp is on, messages are
cleared when an input statement is executed.

NOTES

Messages placed on the screen do not form part of the declared
data for that screen and are not redrawn when the screen is
redrawn or removed when the screen is turned off.

EXAMPLE

message "New record inserted for " + C name
message "Updating sales ledger ..."
message "" (Clear the current message)
at 8,40: message "This is line 8 column 40"
at 12,10: vdu 50: \

message "This is at line 12 column 10":vdu 51

SEE ALSO

redraw, at, put, error

Sculptor Reference Manual
Screen Form Language

04.90 message 7-112

newform Re-display the screen form

SYNTAX

newform

DESCRIPTION

Clears the screen and re-displays the background screen form. This
command is useful if an exec statement has been used to call a program
which may have destroyed the screen form.

NOTES

This command does not redisplay graphics or data field contents.
The redraw command may be used to redisplay the screen form,
data and associated graphics.

EXAMPLE

exec "sage invoice"
newform

SEE ALSO

redraw

7-113 newform 04.90 Sculptor Reference Manual
Screen Form Language

Read the next record next

SYNTAX

next file_id [nsr = label] [riu = label]

DESCRIPTION

Unlocks any existing locked record on the file and then reads the next
record in ascending key sequence from the specified file. The next record
is the one whose key immediately follows the last key referenced by any
file access command except testkey, even if that key does not actually
exist on the file. Note that next never returns the first record on a file if
its key is completely null (all bytes binary zero).

If end of file has been reached, the error No such record is displayed
and control passes to the option prompt. This error may be trapped by
using the nsr = label clause, in which case control passes to the line
indicated.

If the next record is currently locked by another user, the message
Waiting ... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu = label clause,
in which case control passes to the line indicated; in this case the file
position is not changed, so another next will try to read the same record.
The nextkey command may be used to skip a busy record. On most
systems, the record in use status can only occur if the file is open in
update mode.

EXAMPLE

*n=Next
clear
next cust riu=NI
display c name - c status
end

NI error "Record in use" :end

Sculptor Reference Manual
Screen Form Language

04.90 next 7-114

nextkey Read next key only

SYNTAX

nextkey ute ta [nsr = label 1

DESCRIPTION

Unlocks any existing locked record and then reads key data only for the
next record in ascending key sequence. No attempt is made to read the
data record, so a record in use status cannot occur and the file's data
fields remain unaltered. Since nextkey is faster than the next command,
it is useful when searching keys for particular values. It may also be used
to skip a locked record whilst reading a file sequentially.

The next key is the one which immediately follows the last key referenced
on the file by any file access command except testkey, even if that key
does not actually exist. Note that nextkey never returns the first key on
a file if that key is completely null (all bytes binary zero).

If end of file has been reached, the error No such record is displayed
and control passes to the option prompt. This error may be trapped by
using the nsr = label clause, in which case control passes to the line
indicated.

EXAMPLE

*s=3earch
message "Enter known part of name"
input target bs=S9 :rewind cust

SI message "Searching ..."
S2 next key cust nsr=S8

if surname ct target then goto 33
goto S2

S3 message "": display surname
prompt "This one" no=SI:read cust
end

S8 message "End of file reached"
S9 end

7-115 nextkey 04.90 Sculptor Reference Manual
Screen Form Language

Configure function keys to select program
options

on

SYNTAX

on key_id *option [, key_id *option 1 ...

DESCRIPTION

The on command configures one or more function keys to select program
options.

key_id is a function key code in the range F1-F32.

*option is a program option code.

Once configured, the option can be selected by pressing the function key
whenever the program is at the option prompt. Pressing the key at other
times has no effect.

A function key remains configured until the program exits, it is
reconfigured for some other purpose or a clearkey command is used to
disable it.

EXAMPLE

In this example, pressing F10 at the option prompt will cause the program
to exit.

on FIO *e
*e=exit

exit

Sculptor Reference Manual
Screen Form Language

04.90 on 7-116

011 global Configure function keys until redefined

SYNTAX

on global key_id gosub I goto label [, ... 1

DESCRIPTION

The on global command configures one or more function keys to call a
subroutine or to transfer control to a specified line. Once configured, a
key remains active until the program exits, it is reconfigured for some
other purpose or a clearkey command is used to disable it. key-id may
be any of F1-F32, BACKTAB, DEL_LINE, INS_LINE, PGDN, PGUP,
SCRL_DN, SCRL_UP or TAB.

gosub label is a subroutine to be called when the key is pressed.

goto label is a line to which control is to be transferred when the key is
pressed.

The key is effective whenever the program is waiting for input in an input
command. Pressing the key at other times has no effect. If the key calls
a subroutine, the input command continues at the point it was interrupted
when the subroutine returns.

NOTES

Any changes to the current input field will not have been stored
when a function key is pressed. The special temp inputbuf
contains the contents of the current input field at the moment the
function key was pressed.

It is proper practice to disable a function key when processing
statements called by that key. If the key is left active and there is
an input statement in the routine, there is a danger of recursion. If
this happens more than a few times, the program will abort with
the error "Input statements nested too deeply".

EXAMPLE

on global F2 gosub DO_CUST, F3 gosub DO_ITEM, FIO goto EXIT

7-117 on global 04.90 Sculptor Reference Manual
Screen Form Language

Specify subroutine to be called on keyboard
interrupt

on
INTERRUPT

SYNTAX

on INTERRUPT gosub label

DESCRIPTION

The on INTERRUPT command specifies a subroutine to be called when
a keyboard interrupt is received. Interrupts can only be received if they
have been enabled - see the interrupts command.

When a keyboard intern ipt occurs, sage first completes the processing
of the current line, which may be a multiple statement line, then calls the
specified subroutine. When the subroutine returns, processing continues
with the next statement.

An input statement can be interrupted whilst it is waiting for input. In this
case, input continues from the point where it was interrupted when the
subroutine returns.

NOTES

On Unix type systems, the keyboard interrupt can be redefined by
changing the entry Interrupt Code(174) in the vdu parameter file.

EXAMPLE

on INTERRUPT gosub PROCESS INTERRUPT

Sculptor Reference Manual
Screen Form Language

04.90 on INTERRUPT 7-118

on local Configure function keys until current option ends

SYNTAX

on local key-id gosub I goto label [, ... 1

DESCRIPTION

The on local command configures one or more function keys to call a
subroutine or to transfer control to a specified line. Once configured, a
key remains active until the current option ends, the program exits, it is
reeonfigured for some other purpose or a clearkey command is used to
disable it. When an end is encountered, the on local keys are cleared.

key-id may be any of F1-F32, BACKTAB, DEL_LINE, INS_LINE, PGDN,
PGUP, SCRL_DN, SCRL_UP orTAB. With gosub, label is a subroutine
to be called when the key is pressed. With goto, label is a line to which
control is to be transferred when the key is pressed.

The key is effective whenever the program is waiting for input in an input
command. Pressing the key at other times has no effect. If the key calls
a subroutine, the input command continues at the point it was interrupted
when the subroutine returns.

NOTES

Any changes to the current input field will not have been stored
when a function key is pressed. The special temp inputbuf
contains the contents of the current input field at the moment the
function key was pressed.

It is proper practice to disable a function key when processing
statements called by that key. If the key is left active and there is
an input statement in the routine, there is a danger of recursion. If
this happens more than a few times, the program will abort with
the error "Input statements nested too deeply".

EXAMPLE

on local F2 gosub DISPLAY_NAME, F3 gosub DISPLAY PHONE

7-119 on local 04.90 Sculptor Reference Manual
Screen~imnLanguage

Open a Sculptor keyed file open

SYNTAX

DESCRIPTION

This command opens a Sculptor keyed file (i.e. one with records to be
accessed in the normal indexed-sequential way according to key values).
For sequential files see the open # command.

open should be used before accessing any of the current program's
standard data files which were initially declared as closed (see the !efile
declaration), or have been closed with the close command.

Closing and re-opening a file does not alter the current file position and
does not clear the file's record buffer but note that the clear command
still operates on a closed file's buffer unless the preserve command has
been used.

If there are no commands in the program which can update the file then
it is opened in read-only mode, otherwise it is opened in update mode.

If the maximum number of open files allowed by the operating system in
use is exceeded, the program will abort. An attempt to open a file which
is already open is ignored.

EXAMPLE

open stock

SEE ALSO

!handles, close, open #

Sculptor Reference Manual
Screen Form Language

04.90 open 7-120

open # Open a sequential file

SYNTAX

open #channel, "pathname" read I write I append [err = label]

DESCRIPTION

Opens a sequential file on channel, which must be a numeric expression
in the range 1-32. pathname is the name of the file to be opened. This
may be a string constant (in quotes) or a field.

If the file is opened for reading, an error will occur if the file does not
exist. If the file is opened for writing, it will be created if it does not exist
or will be truncated to zero length if it does exist. If the file is opened for
appending, it will be created if it does not exist but if it does exist, the file
pointer will be positioned at the end of the file.

If a file needs to be open to read and write, it may be opened twice on
different channels.

A sequential file may be read using the get # command and written using
the put # command. The rewind # command may be used to reposition
the file pointer to the beginning of the file. When it is no longer required,
the file should be closed using the close # command.

If the optional err trap is present and an error occurs, the system error
number is stored in the special temp errno and control passes to the
specified label. If an error occurs and there is no err trap, an error
message is displayed and the program aborts.

NOTES

The number of sequential files which may be opened concurrently
is governed by the operating system, but is usually not less than
16.

EXAMPLE

open #1, seqfi1e write
open #barcode, "/dev/barcode" read err=OPENERR

7-121 open # 04.90 Sculptor Reference Manual
Screen Form Language

Enable or disable option line help messages opthelp

SYNTAX

opt help on I off

DESCRIPTION

Help text can be attached to an option definition by including the required
wording within { } on the program line that defines the option. This help
text is available if a block style option line is being used (!option block).

If opthelp is on, any help text which is attached to the currently
highlighted option is displayed on the message line.

If opthelp is off, the help text is not displayed. This is the default state.

NOTES

If opthelp is on, the message line will be cleared when an option
ends, whether or not there is any help text to be displayed.

EXAMPLE

!option block
opt help on

i=insert {Enter a new stock record} / will be shown */

Sculptor Reference Manual
Screen Form Language

04.90 opthelp 7-122

pause Suspend the program and wait for an alarm
interrupt

SYNTAX

pause

DESCRIPTION

The program sleeps until an alarm interrupt is sent to the process. On
receiving an alarm interrupt, processing continues with the statement
which follows the pause.

NOTES

This command is available only on Unix and certain similar
operating systems.

A good understanding of the equivalent operating system function
is recommended before using the pause command. For example,
it is wise on Unix to ensure that at least a few seconds elapse
before a program which has paused can receive an alarm
interrupt. Otherwise, because of task switching, it is possible for
the program which is pausing to receive and ignore the alarm
before it has completed the pause operation, with the result that
it sleeps forever.

SEE ALSO

wakeup

7-123 pause 04.90 Sculptor Reference Manual
Screen Form Language

Preserve file buffer from global clear preserve

SYNTAX

preserve file_id

DESCRIPTION

Stops the global clear command (with no field list) from clearing the
specified field's record buffer. Takes effect for the rest of the program.

The preserve command may be applied to both open and closed files.

EXAMPLE

preserve control

Sculptor Reference Manual
Screen Form Language

04.90 preserve 7-124

prey Read the previous record

SYNTAX

prey file_id [nsr = label 1 [rlu = label 1

DESCRIPTION

Unlocks any existing locked record and reads the previous record from
the specified file. The previous record is the one whose key immediately
precedes the last key referenced by any file access command except
testkey, even if that key does not actually exist on the file. Note that prey
cannot return the last record on a file if its key contains the highest
possible value.

If beginning of file has been reached, the error No such record is
displayed and control passes to the option prompt. This error may be
trapped by using the nsr = label clause, in which case control passes to
the line indicated.

If the previous record is currently locked by another user, the message
Waiting ... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu = label clause,
in which case control passes to the line indicated; in this case the file
position is not changed, so another prey will try to read the same record.
The prevkey command may be used to skip a busy record. On most
operating systems, the record in use status can only occur if the file is
open in update mode.

NOTE

On VMS, prey only works on Sculptor format files. On RMS
indexed files (.v extension), prey always returns a nsr condition.

EXAMPLE

*p~Previous

NI

clear
prev cust riu~NI
display c name - c status
end

7-125 prev 04.90 Sculptor Reference Manual
Screen Form Language

Read previous key only prevkey

SYNTAX

prevkey file_id [nsr = label]

DESCRIPTION

Unlocks any existing locked record and reads key data for the previous
record in descending key sequence. No attempt is made to read the data
record, so a record in use status cannot occur and the file's data fields
remain unaltered. prevkey is useful for skipping locked records when
reading through the file in descending key sequence. It is also faster than
the prev command when only key data is required.

The previous key is the one which immediately precedes the last key
referenced on the file by any file access command except testkey, even
if that key does not actually exist. By definition, prevkey cannot return
the last key on a file if that key contains the maximum possible data value.

If beginning of file has been reached, the error No such record is
displayed and control passes to the option prompt. This error may be
trapped by using the nsr = label clause, in which case control passes to
the line indicated.

NOTE

On VMS, prevkey only works on Sculptor format files. On RMS
indexed files (.v extension), prevkey always returns a nsr
condition.

EXAMPLE

prevkey stock nsr=BOF

Sculptor Reference Manual
Screen Form Language

04.90 prevkey 7-126

prompt Prompt for yes / no reply

SYNTAX

prompt [text expression [no = label] [yes = label]]

DESCRIPTION

By default the display of the text expression is centralised beneath the
menu line. The line on which it appears may be changed by previously
using the at command on the same multi-statement line as the prompt
command. The text will have (y/n)? appended and a valid reply is
awaited. Only an upper or lower case y or n is accepted.

The no = label and yes = label clauses enable the programmer to
designate the next line to be executed according to the operator's reply.
If the particular reply is not trapped, execution continues with the next
program statement.

If the prompt command is used alone (without any parameters), it
displays nothing but awaits a key press before continuing with the next
statement.

The language configuration program lef may be used to alter the (y/n)?
text in sage itself. If this is done, note that the characters replacing y and
n must be in exactly the same place in the text.

EXAMPLE

*d=Delete
check cust
at 5,15:prompt "Are you sure" no=Dl
delete cust
message "Customer deleted. Press a key"
prompt
clear

01 end

7-127 prompt 04.90 Sculptor Reference Manual
Screen Form Language

Write data to a sequential file put #

SYNTAX

put [# channel,] expression { format format]
[, expression [format format]] ... [err = label]

DESCRIPTION

Writes data to the file which is open on channel. If channel is 0 (zero) or
omitted, data is written to the standard output (normally the screen).

Each expression is evaluated and output as ASCII text. If a format
keyword is not present, a default format to suit the type of the expression
is used. If the format keyword is present, format must be a valid Sculptor
field format. It may be an alpha field or a string constant (in quotes).

A comma between items causes the value in the special temp separator
to be output. By default, separator is an a1 field and has the value",".
It may be assigned a new value or redefined as a wider field. A
semi-colon may be used in place of the comma in which case a separator
is not output. A newline is appended at the end of the data unless the
final item is terminated by a comma or a semi-colon.

If the optional err trap is present and an error occurs, the system error
number is stored in the special temp errno and control passes to the
specified label. If an error occurs and there is no err trap, an error
message is displayed and the program aborts.

NOTES

If a field has the n (null-terminated) format defined, it is written as
stored and the assigned field length is preserved.

EXAMPLE

This short program creates a standard merge file for the Microsoft
Word™ v4.00 word processor. This file format requires a header record
defining the field names to be used, and data records separated by
CR/LF. A comma is used as the field delimiter.

Sculptor Reference Manual
Screen Form Language

04.90 put # 7-128

As the stored data itself may contain commas, the text fields are enclosed
in quotes in this example. The fields to be output should be stripped of
trailing spaces before being enclosed in quotes. This is done here by
applying the r format modifier.

Create MS-WORD 4.00 merge file

wordmrge.f

creates MSWORD v4.00 merge file

!file ADD address
!temp ctr"i4
!temp q"a1
+ctr,Records Output,10,35

The r modifier (strip trailing spaces) is forced here
by placing fields on a dummy screen. This could also
have been achieved using the describe program

!screen 8
+add name,,5,30,r
+add-add1,,7,30,r
+add-add2,,8,30,r
+add-add3,,9,30,r
+add=pc,,10,30,r

q=' n r : message "P'rcce ssi r.c"
open #l,"MERGE.DAT" write err=OPENERR
gosub HEADER

LOOP ctr=ctr+1 : display ctr
next ADD nsr=DONE
put #l,q;add name;q,q;add add1;q, err=WRITERR
put #1,q;add-add2;q,;q;add add3;q, err=WRITERR
put #1, q;add=pc;q, add_spent err=WRITERR
goto LOOP

HEADER put#l,"name,street,town,county,postcode,spent"
return
close #1 : exit
at 23,1 : put "Error ";errno;" opening file ";
close #1 : prompt : exit 9
at 23,1 : put "Error ";errno;" writing file ";
close #1 :-prompt : exit 9

DONE
OPENERR

WRITERR

7-129 put # 04.90 Sculptor Reference Manual
Screen Form Language

Read a record read

SYNTAX

read file_id [key = field list] [nsr = label] [riu = label]

DESCRIPTION

Unlocks any existing locked record on the file and then reads the record
whose key exactly matches the supplied key. If no matching key is found,
the error No such record is displayed and control passes to the option
prompt. This error may be trapped by using the nsr = label clause, in
which case control passes to the line indicated. An unsuccessful read
leaves the record buffer unaltered.

If the requested record exists but is currently locked by another user, the
message Waiting ... is displayed and the read is retried every three
seconds until successful. This status may be trapped by using the riu =
label clause, in which case control passes to the line indicated. On most
systems, the record in use status can only occur if the file is open in
update mode.

If the key= clause is omitted, the data in the file's natural key fields is
used as the key. If the key= clause is present, a key is constructed using
data from the named fields.

EXAMPLE

*f=1"ind Item
input st code·
read stk-nsr=1"l
riu=1"2

1"1 error "Item not recorded": end
1"2 error "In use - please try later": end

Another example
.Input order number and read details

input 0 ordno
read orders

.Now read customer name and address
type = "C"
read cust key=type,o custno

Sculptor Reference Manual
Screen Form Language

04.90 read 7-130

readkey Read key data only

SYNTAX

read key file_id [key = field list] [nsr = label]

DESCRIPTION

Reads key data only from the designated file. If a record is located whose
key exactly matches the supplied key, then the file's natural key fields
are updated and control passes to the next statement. No attempt is
made to read the data record, so a record in use status cannot occur
and the file's data fields remain unaltered.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr = label clause, in which case control passes to the line indicated.

Whether or not a matching key is found, the current file position is
changed for the purpose of the next and nextkey commands. In this
respect, readkey differs from testkey which does not alter the file
position.

If the key= clause is omitted, the data in the file's natural key fields is
used as the key. If the key= clause is present, a key is constructed using
data from the named fields.

EXAMPLE

.Position file to read first "TT" item
st code ~ "TT"
readkey stk nsr~Nl

NI next stk nsr~NS

7-131 readkey 04.90 Sculptor Reference Manual
Screen Form Language

Redraw the screen display. redraw

SYNTAX

redraw

DESCRIPTION

Clears the screen and re-displays all currently active screens and all
graphics displayed by graphics declarations (!at ... drawbox, etc).

Graphics displayed using graphics commands and text displayed with
the put command is not redisplayed. Text output with the message
command is redisplayed only if it is on the standard message line.

EXAMPLE

exec "sysadm users -g " + t uname
redraw

Sculptor Reference Manual
Screen Form Language

04.90 redraw 7-132

return Return from a subroutine

SYNTAX

return

DESCRIPTION

Returns control from a subroutine to the statement following the calling
gosub.

NOTES

All pending returns are maintained on an internal stack and a
"Stack overflow" error will occur if subroutines are nested more
than 90 levels deep.

An end command clears the internal stack and thus clears any
pending return statements.

EXAMPLE

*f=Find
clear
input item bs=Fl
find item
gosub DISP

Fl end

*n=Next
clear
next stk
gosub DISP
end

DISP display item - rol
if stklev < rol then\

error "Below re-order level"
return

7-133 return 04.90 Sculptor Reference Manual
Screen Form Language

Reposition a Sculptor keyed file at its start rewind

SYNTAX

rewind file_id

DESCRIPTION

Repositions the specified file at its start so that the next command will
return the first record in the file. The content of the file's record buffer is
not affected.

NOTES

The next command cannot return a record whose key is
completely null (i.e. all binary zeros).

EXAMPLE

rewind trans

SEE ALSO

open, close

Sculptor Reference Manual
Screen Form Language

04.90 rewind 7-134

rewind # Rewind a sequential file

SYNTAX

rewind # channel

DESCRIPTION

Rewinds the sequential file open on channel.

channel is a number in the range 1-32 which corresponds to the channel
number used when the file was opened. It may be a constant, field name
or expression.

If the file is open in read mode, the next get will read from the beginning
of the file.

If the file is open in write or append mode, the next put will overwrite
the beginning of the file. Rewinding a file does not truncate it.

EXAMPLE

rewind #1

7-135 rewind# 04.90 Sculptor Reference Manual
Screen Form Language

Enable or disable rounding

SYNTAX

rounding on I off

DESCRIPTION

rounding

When floating point values are assigned to integer fields, the fractional
part is truncated and only the integer part is used. This is the default state
with rounding off. With rounding on the fractional part is rounded to the
nearest integer by adding 0.5 prior to truncating.

For example, if the value 5.6 is assigned to an integer field, the result is
5 if rounding is off or 6 if rounding is on. If the value 5.4 is assigned, the
result is always 5. The value 5.5 normally becomes 6 but since floating
point formats cannot always exactly represent a number, this is not
guaranteed.

By default, rounding is off.

EXAMPLE

rounding on
real ~ 5.6
int ~ real
display int
rounding off
int~real
display int

/* will display 6 */

/* will display 5 */

Sculptor Reference Manual
Screen Form Language

04.90 rounding 7-136

screen Switch a screen overlay on or off

SYNTAX

screen number on I off

DESCRIPTION

Switches the specified screen overlay on or off. number is a screen
identifier in the range 1-8 as defined in a !screen declaration. (Fields
and graphics declarations which do not follow an explicit !screen
declaration are deemed to be part of screen 1.)

When a screen is switched on, all fields, values and graphics which are
part of that screen are displayed. This will erase other data in the same
area of the screen.

When a screen is switched off, all underlying fields, values and graphics
which were erased when the screen was switched on are redrawn.

When the program starts, screen 1 is on and all other screens are off.
See the !screen declaration for further information.

EXAMPLE

screen 2 on

7-137 screen 04.90 Sculptor Reference Manual
Screen Form Language

Reset the scroll line number scroll

SYNTAX

scroll [expression]

DESCRIPTION

Resets the special temp scrline (the scroll line number), according to
the value of expression as follows:

expression = 0 (or omitted) Increments scrline by 1.

expression > 0 Sets scrline to the value of expression

expression < 0 Reduces scrline by the value of expression
(but not below 1).

The value in scrline is the default index value for all subscripted fields
which are not explicitly indexed when referenced. It is also the row within
the scroll area on which clear, display and input commands operate on
screen fields which are displayed in the scroll area.

If the value in scrline exceeds the depth of the scroll area or exceeds
the dimension of a subscripted field, a wrap around takes effect.

NOTES

The value held in scrline cannot be altered by direct assignment.

EXAMPLE

*i=input
INIO input ordno bs=IN90

scroll 1
IN20 input st code, st qty bs=IN40 eoi=IN30

if (scrlTne < MAXLINE) then scroll : goto IN20
IN30 prompt "All correct" no=IN20

gosub STORE ORDER
clear : end-

IN40 if (scrline > 1) then scroll -1 : goto IN20
goto INIO

IN90 prompt "Abandon this order" no=INlO
c::"ear: end

Sculptor Reference Manual
Screen Form Language

04.90 scroll 7-138

skip Skip fields in an input command

SYNTAX

skip number

DESCRIPTION

Skips the specified number of fields during an input command. number
may be a constant or an expression.

A skip command may be executed within a subroutine called from within
an input statement or may be executed prior to an input statement. If
used within an input statement, skip operates immediately the
subroutine returns to the input. If used prior to an input, skip takes effect
as soon as the next input statement is encountered.

If number is positive, the current position in the field list of the input
command is moved forward by the specified number. A skip 1 takes input
to the next field. A skip 2 misses out the next field. If skip would move
the input beyond the last field, the input command terminates normally.

If number is negative, the current position in the field list is moved
backward the specified number of fields. A skip -1 takes the input to the
previous field. If skip would move the input beyond the first field, the
input command executes a bs (backspace) trap if there is one, otherwise
it stops on the first input field.

EXAMPLE

input type gosub CHECK, value, description

CHECK if type=2 or type=3 then skip 2
return

SEE ALSO

input

7-139 skip 04.90 Sculptor Reference Manual
Screen Form Language

Suspend the program for a number of seconds sleep

SYNTAX

sleep numeric expression

DESCRIPTION

Suspends program execution for the number of seconds specified in the
expression. When the time has elapsed, execution resumes at the
statement following the sleep command.

Since many operating system clocks are only accurate to the nearest
second, an error of up to one second is possible.

EXAMPLE

A typical use of the sleep command is to give the operator time to read
a message before clearing the screen:

message "Order deleted"
sleep 4
clear
end

Sculptor Reference Manual
Screen Form Language

04.90 sleep 7-140

testkey Check for record with specified key

SYNTAX

test key file_id [key = field_list] [nsr = label]

DESCRIPTION

Tests the specified file for a record whose key exactly matches the
supplied key. If the record exists, then the file's natural key fields are
updated and control passes to the next statement. No attempt is made
to read the data record, so a record in use status cannot occur and the
file's data fields remain unaltered.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr = label clause, in which case control passes to the line indicated.

Whether or not a matching key is found, the current file position remains
unchanged for the purpose of the next and nextkey commands. In this
respect test key differs from readkey which alters the file position.

If the key= clause is omitted, the data in the file's natural key fields is
used as the key. If the key= clause is present, a key is constructed using
data from the named fields.

EXAMPLE

Typical use is in an insert option to test if the record already exists prior
to inputting all the data fields:

*i=lnsert
11 input surname,fstname bs=I9

testkey cust nsr=12
error "Customer already recorded"
goto 11

12 input addrl - status bs=11
insert cust message "New customer inserted"

19 end

7·141 test key 04.90 Sculptor Reference Manual
Screen Form Language

Unlock a record unlock

SYNTAX

unlock file_id

DESCRIPTION

Unlocks the currently selected record from the specified file to allow
access by other users. The data in the file's record buffer is not affected
but the record may no longer be written back or deleted.

A locked record is automatically unlocked if it is written back or deleted
or if an attempt is made to read another record from the same file.
Records are only locked if the file is open in update mode (see !file).

If a lock command has been executed on the named file by this program,
unlock will remove that lock.

NOTES

On single user operating systems which do not support record
locking, the unlock command is ignored.

EXAMPLE

*f=Find
input flight no
read resv -
gosub Drsp
prompt "Hold" yes=Fl
unlock resv

Fl end

Sculptor Reference Manual
Screen Form Language

04.90 unlock 7-142

validhelp Enable or disable validation list as help message

SYNTAX

validhelp on I off

DESCRIPTION

If valid help is on and input data fails to pass the validation list attached
to the field, the validation list is automatically displayed as a help
message.

If validhelp is off, the validation list is not available as a help message.

By default, validhelp is off.

EXAMPLE

validhelp on

SEE ALSO

autohelp

7-143 validhelp 04.90 Sculptor Reference Manual
Screen Form Language

Send a vdu control sequence to the screen vdu

SYNTAX

vdu numeric expression

DESCRIPTION

This command sends control sequence number n from the vdu
parameter file. The cursor can be positioned using the at command
before the vdu control sequence is sent.

The control sequences in the vdu parameter file are numbered from 1
upwards, starting with the sequence Position Cursor. The vdu
command can be used to send any of these sequences, but some
sequences, such as Position Cursor, are meaningless unless
accompanied by additional output data.

The sequences from 44 to 59 are available for any purpose, the
sequences from 126 to 134 are available for attribute control specifically,
and the sequences from 154 to 164 are available for user graphics
characters.

EXAMPLE

at 7,28: vdu 59

Sculptor Reference Manual
Screen Form Language

04.90 vdu 7-144

SYNTAX

vline Draw a vertical line

vline fen, styfe

DESCRIPTION

Draws a vertical line at the current cursor position of length fen characters
using the graphics characters defined in the VDU parameter file. styfe is
a parameter in the range 0-16 which defines the style of the line as
follows.

o Draw a blank line with spaces. May be used to remove an
existing line.

1-12 Draw a thin line with startand end characters according to
the following table. If the start and end characters do
not match this table, check that the graphics characters
are correctly defined in the VDU parameter file.

1 2 3 4 5 6 7 8 9 10 11 12

13 Draw a line using block graphics character 1 in the VDU file.
14 Draw a line using block graphics character 2 in the VDU file.
15 Draw a line using block graphics character 3 in the VDU file.

16 Draw a line using block graphics character 4 in the VDU file.

EXAMPLE

at 5,60 : vline 8,14

7-145 vline 04.90 Sculptor Reference Manual
Screen Form Language

Send an alarm interrupt to a process wakeup

SYNTAX

wakeup task id

DESCRIPTION

An alarm interrupt is sent to the specified process. The alarm call can be
sent to any process whose id is known and which is capable of accepting
the interrupt. For example, it could be sent to a sage or sagerep program
which has used the pause command. The suspended program will then
restart from the point at which it paused.

NOTES

A simple way of determining the task id of another program is for
each participating program to write its id into a shared file.

A good understanding of the equivalent operating system function
is recommended before using the wakeup command. For
example, it is wise on Unix to ensure that at least a few seconds
elapse before a program which has paused can receive an alarm
interrupt. Otherwise, because of task switching, it is possible for
the program which is pausing to receive and ignore the alarm
before it has completed the pause operation, with the result that
it sleeps forever.

This command is available only on Unix and certain similar
operating systems.

EXAMPLE

read process key=task /* get my entry */
wake up proc generate /* wake generate */
tmp gen=proc update
read process-key=proc generate
proc_end=tmp_gen /* tell gen to wake upd */
write process
read process key=tmpgen
proc end=task
write process /* tell update who i am */
pause /* wait for wakup from update */

Sculptor Reference Manual
Screen Form Language

04.90 wakeup 7-146

write Write a record back to a keyed file

SYNTAX

write file_id [re = label] [nrs = label]

DESCRIPTION

Writes back and unlocks the record last read from the specified file. Note
that a record must be written back if amendments made to its key or data
fields are to be permanently recorded.

If no record is currently selected, then the error No record selected is
displayed and control passes to the option prompt. This error may be
trapped by using the nrs = label clause, in which case control passes to
the line indicated.

If any key data has been altered since the record was read, then a new
record is inserted and the old record is deleted. In this case, the file is
positioned at the old key value for the purpose of the next and next key
commands.

If key data has been altered but a record with the new key value already
exists on the file, then the error Record exists is displayed, the old
record is not deleted and control passes to the option prompt. This error
may be trapped by using the re = label clause in which case control
passes to the line indicated.

EXAMPLE

*a~Amend
check cust

Al input c name - c status eoi~A2
A2 prompt "Amendments correct" no~AI

write cust
clear
end

7-147 write 04.90 Sculptor Reference Manual
Screen Form Language

